

HERMES Core Documentation

This is the documentation for the hermes_core Python Package.

	Release History
	Full Changelog

	Calibration and Measurement Algorithm Document (CMAD)

	User’s Guide
	Brief Tour

	Opening and Writing HERMES Data

	HERMES CDF Format Guide

	Customization and Global Configuration

	Logging system

	Developer’s Guide
	Developer Environment

	Coding Standards

	Testing Guidelines

	Documentation Rules

	Workflow for Maintainers

	Global Settings

	API Reference
	hermes_core Package

	hermes_core.timedata Module

	hermes_core.util Package

	hermes_core.util.io Module

	hermes_core.util.schema Module

	hermes_core.util.util Module

	hermes_core.util.validation Module

	Examples
	Creating a CDF File

Release History

	Full Changelog

Full Changelog

This project uses semantic versioning [https://semver.org].

Latest

	Added data class to hold measurements and to save to CDF files

0.2.0 (2023-03-22)

This release includes improvements tested in the second dataflow test. Since the last release, the improvements are as follows:

	Uses fstrings instead of the format syntax

	Adds a log message on import to show the version number of the package

	Documentation content and styling improvements

	Switches from using setup.py to pyproject.toml for package

	Bug fixes for supporting pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib]’s Path objects, and a permissions bug to the devcontainer

	Using f-strings and log on import by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/28

	Added latest versions of python to testing by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/29

	Add to the Documentation the location for where config files should be store (dynamically) by @dbarrous in https://github.com/HERMES-SOC/hermes_core/pull/35

	Fix devcontainer config to use new vscode user by @dbarrous in https://github.com/HERMES-SOC/hermes_core/pull/32

	Update to docs, added logo, updated theme colors and favicon by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/37

	Fix to version number and move to pyproject.toml usage by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/40

	Bug fix by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/41

0.1.0 (2022-10-05)

This version release was tested in the first HERMES Ground System data flow test.

	First draft of python packaging including sphinx documentation based on the sunpy package template

	First draft of the documentation including coding standards for the HERMES ecosystem

	Automated testing and coverage using GitHub actions

	Logging support

	Configuration support

	Utilities parsing compliant filenames for level 0 binary files and creating and parsing higher level filenames

Calibration and Measurement Algorithm Document (CMAD)

HERMES consists of multiple instruments, each of which hosts its Calibration and Measurement Algortihm Document.
See the documentation for each instrument.

User’s Guide

Welcome to our User guide.
For more details checkout the API Reference.

	Brief Tour

	Opening and Writing HERMES Data
	Overview

	Creating a HermesData object

	Creating a HermesData from an existing CDF File

	Adding data to a HermesData Container

	Adding metadata attributes

	Visualizing data in a HermesData Container

	Writing a CDF File

	Validating a CDF File

	HERMES CDF Format Guide
	1. Introduction

	2. HERMES Science Investigations

	3. Conventions

	4. Global Attributes

	5. Variables

	Customization and Global Configuration
	The configrc file

	Using your own configrc file

	Dynamic settings

	Logging system
	Overview

	Configuring the logging system

	Context managers

A Brief Tour

Insert a tour here.

Opening and Writing HERMES Data

Overview

The HermesData class provides a convenient and efficient way to work with HERMES science CDF data files.
The point of this class is to simplify data management, enhances data discovery, and facilitates adherence to CDF standards.

CDF (Common Data Format) [https://cdf.gsfc.nasa.gov] files are a binary file format commonly used by NASA scientific research to store and exchange data. They provide a flexible structure for organizing and representing multidimensional datasets along with associated metadata. CDF files are widely used in space physics. Because of their versatility, CDF files can be complex.
CDF standards exist to make it easier to work with these files.
International Solar-Terrestrial Physics (ISTP) [https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#VAR_TYPE] compliance is a set of standards defined by the Space Physics Data Facility (SPDF).
ISTP compliance ensures that the data adheres to specific formatting requirements, quality control measures, and documentation standards.
Uploading CDF files to the NASA SPDF archive [https://spdf.gsfc.nasa.gov] requires conforming to the ISTP guidelines.
In addition, HERMES maintains it’s own standards in the CDF guide.

The CDF C library must be properly installed in order to use this package to save and load CDF files.
The CDF library can be downloaded from the SPDF CDF Page [https://cdf.gsfc.nasa.gov/] to use the
CDF libraries in your local environment. Alternatively, the CDF library is installed and available
through the HERMES development Docker container environment. For more information on the HERMES Docker
container please see our Development Environment Page.

To make it easier to work with HERMES data, the HermesData class facilitates the abstraction of HERMES CDF files.
It allows users to read and write HERMES data and is compliant with PyHC expectations [https://heliopython.org].
The data is stored in a TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries] table while the metadata is stored in dictionaries.
TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries] is a Python class for handling scientific time series data that provides a convenient and familiar interface for working with tabular data.
By loading the contents of a CDF file into a TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries] table, it becomes easier to manipulate, analyze, and visualize the data.
Additionally, metadata attributes can be associated with the table, allowing for enhanced documentation and data discovery.
The HermesData class aims to provide a simplified interface to reading and writing HERMES data and metadata to CDF files while automatically handling the complexities of the underlying CDF file format.

Creating a HermesData object

Creating a HermesData data container from scratch involves four
pieces of data:

	
	timeseries (required) - an TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries] containing the time dimension of
	the data as well as at least one other measurement. This data structure must be used for all
scalar time-varying measurement data.

	
	spectra (optional) - an NDCollection [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection] containing one or more NDCube [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube] objects
	representing higher-dimensional measurements and spectral data. This data must should be used
for all vector or tensor-based measurement data.

	
	support (optional) - a dict[astropy.nddata.NDdata | astropy.units.Quantity] containing one
	or more non-time-varying (time invariant) measurements, time-invariant support or metadata
variables.

	
	meta (optional) - a dict [https://docs.python.org/3/library/stdtypes.html#dict] containing global metadata information about the CDF. This data
	structure must be used for all global metadata required for ISTP compliance.

Alternatively, a HermesData data container can be loaded from
an existing CDF file using the load() function.

Creating a TimeSeries for HermesData timeseries

A HermesData must be initialized by providing a
TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries] object with at least one measurement. There are many ways to
initialize one but here is one example:

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> ts = TimeSeries(
... time_start='2016-03-22T12:30:31',
... time_delta=3 * u.s,
... data={'Bx': u.Quantity(
... value=[1, 2, 3, 4],
... unit='nanoTesla',
... dtype=np.uint16
...)}
...)

Be mindful to set the right number of bits per measurement, in this case 16 bits.
If you do not, it will likely default to float64 and if you write a CDF file, it will be larger
than expected or needed. The valid dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] choices are uint8, uint16, uint32, uint64,
int8, int16, int32, int64, float16, float32, float64, float164. You can also create your time
array directly

>>> from astropy.time import Time, TimeDelta
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> times = Time('2010-01-01 00:00:00', scale='utc') + TimeDelta(np.arange(100) * u.s)
>>> ts = TimeSeries(
... time=times,
... data={'diff_e_flux': u.Quantity(
... value=np.arange(100) * 1e-3,
... unit='1/(cm**2 * s * eV * steradian)',
... dtype=np.float32
...)}
...)

Note the use of time [https://docs.astropy.org/en/stable/time/ref_api.html#module-astropy.time] and astropy.units [https://docs.astropy.org/en/stable/units/ref_api.html#module-astropy.units] which provide several advantages over using
arrays of numbers and are required by HermesData.

Creating a NDCollection for HermesData spectra

The HermesData object leverages API functionality of the
ndcube [https://docs.sunpy.org/projects/ndcube/en/stable/reference/ndcube.html#module-ndcube] package to enable easier analysis of higher-dimensional and spectral data measurements.
The main advantage that this package provides in in it’s handling of coordinate transformations
and slicing in real-world-coordinates compared to using index-based slicing for higher-dimensional
data. For more information about the ndcube [https://docs.sunpy.org/projects/ndcube/en/stable/reference/ndcube.html#module-ndcube] package and its API functionality please read the
SunPy NDCube documentation [https://docs.sunpy.org/projects/ndcube/en/stable/].

You can create a NDCollection [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection] object using an approach similar to the following example:

>>> import numpy as np
>>> from astropy.wcs import WCS
>>> from ndcube import NDCube, NDCollection
>>> spectra = NDCollection(
... [
... (
... "example_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...),
...)
...]
...)

The NDCollection [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection] is created using a list of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] containing named
(str, NDCube) pairs. Each NDCube [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube] contains the required data array, a
WCS [https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS] object responsible for the coordinate transformations, optional
metadata attributes as a dict [https://docs.python.org/3/library/stdtypes.html#dict], and an units [https://docs.astropy.org/en/stable/units/ref_api.html#module-astropy.units] unit that is used to treat the data
array as an Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity].

Creating a dict for HermesData support

The HermesData object also accepts additional arbitrary data
arrays, so-called non-record-varying (NRV) data, which is frequently support data. These data are
required to be a dict [https://docs.python.org/3/library/stdtypes.html#dict] of NDData [https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData] or
Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] objects which are data containers for physical data.
The HermesData class supports both Quantity and NDData
objects since one may have advantages for the type of data being represented: Quantity
objects in this support dict [https://docs.python.org/3/library/stdtypes.html#dict] may be more advantageous for scalar or 1D-vector data while
NDData objects in this support dict [https://docs.python.org/3/library/stdtypes.html#dict] may be more advantageous for higher-dimensional vector
data. A guide to the nddata [https://docs.astropy.org/en/stable/nddata/ref_api.html#module-astropy.nddata] package is available in the
astropy documentation [https://docs.astropy.org/en/stable/nddata/].

>>> from astropy.nddata import NDData
>>> support_data = {
... "const_param": u.Quantity(value=[1e-3], unit="keV", dtype=np.uint16),
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }

Metadata passed in through the NDData [https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData] object is used by
HermesData as variable metadata attributes required for ISTP
compliance.

Creating a dict for HermesData meta

You must create a dict [https://docs.python.org/3/library/stdtypes.html#dict] or OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] containing the required CDF global metadata.
The class function global_attribute_template() will
provide you an empty version that you can fill in. Here is an example with filled in values.

>>> input_attrs = {
... "DOI": "https://doi.org/<PREFIX>/<SUFFIX>",
... "Data_level": "L1>Level 1", # NOT AN ISTP ATTR
... "Data_version": "0.0.1",
... "Descriptor": "EEA>Electron Electrostatic Analyzer",
... "Data_product_descriptor": "odpd",
... "HTTP_LINK": [
... "https://spdf.gsfc.nasa.gov/istp_guide/istp_guide.html",
... "https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html",
... "https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html"
...],
... "Instrument_mode": "default", # NOT AN ISTP ATTR
... "Instrument_type": "Electric Fields (space)",
... "LINK_TEXT": [
... "ISTP Guide",
... "Global Attrs",
... "Variable Attrs"
...],
... "LINK_TITLE": [
... "ISTP Guide",
... "Global Attrs",
... "Variable Attrs"
...],
... "MODS": [
... "v0.0.0 - Original version.",
... "v1.0.0 - Include trajectory vectors and optics state.",
... "v1.1.0 - Update metadata: counts -> flux.",
... "v1.2.0 - Added flux error.",
... "v1.3.0 - Trajectory vector errors are now deltas."
...],
... "PI_affiliation": "HERMES",
... "PI_name": "HERMES SOC",
... "TEXT": "Valid Test Case",
... }

Here is an example using the global_attribute_template()
function to create a minimal subset of global metadata attributes:

>>> from hermes_core.timedata import HermesData
>>> input_attrs = HermesData.global_attribute_template("eea", "l1", "1.0.0")

Using Defined Elements to create a HermesData Data Container

Putting it all together here is instantiation of a HermesData
object:

>>> from hermes_core.timedata import HermesData
>>> hermes_data = HermesData(
... timeseries=ts,
... support=support_data,
... spectra=spectra,
... meta=input_attrs
...)

For a complete example with instantiation of all objects in one code example:

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from ndcube import NDCube, NDCollection
>>> from astropy.nddata import NDData
>>> from hermes_core.timedata import HermesData
>>> # Create a TimeSeries structure
>>> data = u.Quantity([1, 2, 3, 4], "gauss", dtype=np.uint16)
>>> ts = TimeSeries(time_start="2016-03-22T12:30:31", time_delta=3 * u.s, data={"Bx": data})
>>> # Create a Spectra structure
>>> spectra = NDCollection(
... [
... (
... "example_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...),
...)
...]
...)
>>> # Create a Support Structure
>>> support_data = {
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }
>>> # Create Global Metadata Attributes
>>> input_attrs = HermesData.global_attribute_template("eea", "l1", "1.0.0")
>>> # Create HermesData Object
>>> hermes_data = HermesData(
... timeseries=ts,
... support=support_data,
... spectra=spectra,
... meta=input_attrs
...)

The HermesData is mutable so you can edit it, add another
measurement column or edit the metadata after the fact. Your variable metadata can be found
by querying the measurement column directly.

>>> hermes_data.timeseries['Bx'].meta.update(
... {"CATDESC": "X component of the Magnetic field measured by HERMES"}
...)
>>> hermes_data.timeseries['Bx'].meta

The class does its best to fill in metadata fields if it can and leaves others blank that it
cannot. Those should be filled in manually. Be careful when editing metadata that was
automatically generated as you might make the resulting CDF file non-compliant.

Creating a HermesData from an existing CDF File

Given a current CDF File you can load it into a HermesData by providing a path to the CDF file:

>>> from hermes_core.timedata import HermesData
>>> hermes_data = HermesData.load("hermes_eea_default_ql_20240406T120621_v0.0.1.cdf")

The HermesData can the be updated, measurements added, metadata added, and written to a new CDF file.

Adding data to a HermesData Container

A new set of measurements or support data can be added to an existing instance. Remember
that new measurements must have the same time stamps as the existing ones and therefore
the same number of entries. Support data can be added as needed.
You can add the new measurements in one of two ways.

The more explicit approach is to use add_measurement() function:

>>> data = u.Quantity(np.arange(len(hermes_data.timeseries['Bx'])), 'Gauss', dtype=np.uint16)
>>> hermes_data.add_measurement(measure_name="By", data=data, meta={"CATDESC": "Test Metadata"})

To add non-time-varying support data use the add_support() function:

>>> hermes_data.add_support(
... name="Calibration_const",
... data=u.Quantity(value=[1e-1], unit="keV", dtype=np.uint16),
... meta={"CATDESC": "Calibration Factor", "VAR_TYPE": "support_data"},
...)
>>> hermes_data.add_support(
... name="Data Mask",
... data=NDData(data=np.eye(5, 5, dtype=np.uint16)),
... meta={"CATDESC": "Diagonal Data Mask", "VAR_TYPE": "support_data"},
...)

Adding metadata attributes

Additional CDF file global metadata and variable metadata can be easily added to a
HermesData data container. For more information about the required
metadata attributes please see the HERMES CDF Format Guide

Global Metadata Attributes

Global metadata attributes can be updated for a HermesData object
using the object’s meta parameter which is an
OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] containing all attributes.

Required Global Attributes

The HermesData class requires several global metadata attributes
to be provided upon instantiation:

	Descriptor

	Data_level

	Data_version

A HermesData container cannot be created without supplying at
lest this subset of global metadata attributes. For assistance in defining required global
attributes, please see the global_attribute_template()
function.

Derived Global Attributes

The HermesDataSchema class derives several global metadata
attributes required for ISTP compliance. The following global attributes are derived:

	CDF_Lib_version

	Data_type

	Generation_date

	HERMES_version

	Logical_file_id

	Logical_source

	Logical_source_description

	Start_time

For more information about each of these attributes please see the
HERMES CDF Format Guide

Using a Template for Global Metadata Attributes

A template of the required metadata can be obtained using the
global_attribute_template() function:

>>> from collections import OrderedDict
>>> from hermes_core.timedata import HermesData
>>> HermesData.global_attribute_template()
OrderedDict([('DOI', None),
 ('Data_level', None),
 ('Data_version', None),
 ('Descriptor', None),
 ('HTTP_LINK', None),
 ('Instrument_mode', None),
 ('Instrument_type', None),
 ('LINK_TEXT', None),
 ('LINK_TITLE', None),
 ('MODS', None),
 ('PI_affiliation', None),
 ('PI_name', None),
 ('TEXT', None)])

You can also pass arguments into the function to get a partially populated template:

>>> from collections import OrderedDict
>>> from hermes_core.timedata import HermesData
>>> HermesData.global_attribute_template(
... instr_name='eea',
... data_level='l1',
... version='0.1.0'
...)
OrderedDict([('DOI', None),
 ('Data_level', 'L1>Level 1'),
 ('Data_version', '0.1.0'),
 ('Descriptor', 'EEA>Electron Electrostatic Analyzer'),
 ('HTTP_LINK', None),
 ('Instrument_mode', None),
 ('Instrument_type', None),
 ('LINK_TEXT', None),
 ('LINK_TITLE', None),
 ('MODS', None),
 ('PI_affiliation', None),
 ('PI_name', None),
 ('TEXT', None)])

This can make the definition of global metadata easier since instrument teams or users only need
to supply pieces of metadata that are in this template. Additional metadata items can be added
if desired. Once the template is instantiated and all attributes have been filled out, you can
use this during instantiation of your HermesData container.

Variable Metadata Attributes

Variable metadata requirements can be updated for a HermesData
variable using the variable’s meta property which is an
OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] of all attributes.

Required Variable Attributes

The HermesData class requires one variable metadata attribute
to be provided upon instantiation:

	CATDESC : (Catalogue Description) This is a human readable description of the data variable.

Derived Variable Attributes

The HermesDataSchema class derives several variable metadata
attributes required for ISTP compliance.

	TIME_BASE

	RESOLUTION

	TIME_SCALE

	REFERENCE_POSITION

	DEPEND_0

	DISPLAY_TYPE

	FIELDNAM

	FILLVAL

	FORMAT

	LABLAXIS

	SI_CONVERSION

	UNITS

	VALIDMIN

	VALIDMAX

	VAR_TYPE

For more information about each of these attributes please see the
HERMES CDF Format Guide

Using a Template for Variable Metadata Attributes

A template of the required metadata can be obtained using the
measurement_attribute_template() function:

>>> from collections import OrderedDict
>>> from hermes_core.timedata import HermesData
>>> HermesData.measurement_attribute_template()
OrderedDict([('CATDESC', None)])

If you use the add_measurement() function, it will
automatically fill most of them in for you. Additional pieces of metadata can be added if desired.

Visualizing data in a HermesData Container

The HermesData provides a quick way to visualize its data through plot.
By default, a plot will be generated with each measurement in its own plot panel.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from hermes_core.timedata import HermesData
>>> bx = np.concatenate([[0], np.random.choice(a=[-1, 0, 1], size=1000)]).cumsum(0)
>>> by = np.concatenate([[0], np.random.choice(a=[-1, 0, 1], size=1000)]).cumsum(0)
>>> bz = np.concatenate([[0], np.random.choice(a=[-1, 0, 1], size=1000)]).cumsum(0)
>>> ts = TimeSeries(time_start="2016-03-22T12:30:31", time_delta=3 * u.s, data={"Bx": u.Quantity(bx, "nanoTesla", dtype=np.int16)})
>>> input_attrs = HermesData.global_attribute_template("nemisis", "l1", "1.0.0")
>>> hermes_data = HermesData(timeseries=ts, meta=input_attrs)
>>> hermes_data.add_measurement(measure_name=f"By", data=u.Quantity(by, 'nanoTesla', dtype=np.int16))
>>> hermes_data.add_measurement(measure_name=f"Bz", data=u.Quantity(bz, 'nanoTesla', dtype=np.int16))
>>> fig = plt.figure()
>>> hermes_data.plot()
>>> plt.show()

(Source code, png, hires.png, pdf)

[image: ../_images/reading_writing_data-1.png]

Writing a CDF File

The HermesData class writes CDF files using the pycdf module.
This can be done using the save() method which only requires a path to the folder where the CDF file should be saved.
The filename is automatically derived consistent with HERMES file naming requirements.
If no path is provided it writes the file to the current directory.
This function returns the full path to the CDF file that was generated.
From this you can validate and distribute your CDF file.

Validating a CDF File

The HermesData uses the istp module for CDF validation, in addition to custom
tests for additional metadata. A CDF file can be validated using the validate() method
and by passing, as a parameter, the full path to the CDF file to be validated:

>>> from hermes_core.util.validation import validate
>>> validation_errors = validate(cdf_file_path)

This returns a list[str] that contains any validation errors that were encountered when examining the CDF file.
If no validation errors were found the method will return an empty list.

HERMES CDF Format Guide

1. Introduction

The HermesDataSchema class provides an interface to
examine the HERMES CDF Format Guide.

1.1 Purpose and Scope

This document is provided as a reference for construction of HERMES standard CDF
files. It is intended to complement information available from the Space Physics Data
Facility (listed in Sec. 1.2). It lays down REQUIREMENTS and
RECOMMENDATIONS for Level 2 (and above) CDF files that are intended for public
access, and should be taken as RECOMMENDATIONs for all other mission CDFs.
This document is based on discussions within the HERMES Science Data Working
Group (HSDWG) and personnel at NASA’s Space Physics Data Facility (SPDF). It is
intended to provide sufficient reference material to understand CDF files and
the requirements for creating HERMES CDF files, and to understand the structure and
contents of the resulting CDF files.

1.2 References

Relevant documents that provide background material and support details provided in
this guide are listed below:

	SPDF CDF User’s Guide [http://cdf.gsfc.nasa.gov/]

	SKTEditor [http://spdf.gsfc.nasa.gov/sp_use_of_cdf.html]

	ISTP Guidelines [http://spdf.gsfc.nasa.gov/istp_guide/istp_guide.html]

	ISTP/IACG Global Attributes [http://spdf.gsfc.nasa.gov/istp_guide/gattributes.html]

2. HERMES Science Investigations

The HERMES Instrument Suite will make high-time resolution measurements of plasmas
(ions and electrons) and magnetic fields. The HERMES Instrument Suite consists of the
following complement of instruments:

	
	Electron Electrostatic Analyzer (EEA): The EEA provides measurements of
	low-energy electrons in the solar wind and in Earth’s deep magnetotail by
measuring electron flux as functions of energy and direction.

	
	Miniaturized Electron pRoton Telescope (MERIT): The MERiT instrument
	measures the flux of high-energy electrons and ions with two telescopes
pointing in opposite directions and nominally spanning the forward and
reverse Parker Spiral.

	
	Noise Eliminating Magnetometer In a Small Integrated System (NEMISIS):
	NEMISIS is comprised of a fluxgate magnetometer (M0) at the end of a
deployable boom and two inductive magnetometers (M1, M2) mounted on
the HERMES platform. Each sensor measures the vector magnetic field at
its location. Measurements from the 3 sensors are combined to reduce the
contribution to the local field due to Gateway.

	
	Solar Probe Analyzer for Ions (SPAN-I): The SPAN-i ion sensor measures
	Interplanetary and Magnetotail ion flux as functions of direction and
energy/charge from several eV/q to 20 keV/q. A time-of-flight section
enables it to sort particles by their mass/charge ratio, permitting
differentiation of ion species.

HERMES Instrument Team Facilities (ITFs) are the principal institutions associated with
each of the HERMES science investigations. These facilities and their personnel provide
support to the operation of their instruments and the overall data processing and
distribution effort for HERMES science data products. The institutions listed in Table
2-1 have responsibility for each of the investigations and their corresponding instruments.

Table 2-1 HERMES ITF Summary

	HERMES Investigation

	Managing Institution

	Principal Investigator

	Electron Electrostatic Analyzer (EEA)

	Goddard Space Flight Center (GSFC)

	
	Gershman

	Miniaturized Electron pRoton Telescope (MERIT)

	Goddard Space Flight Center (GSFC)

	
	Kanekal

	Noise Eliminating Magnetometer In a Small Integrated System (NEMISIS)

	Goddard Space Flight Center (GSFC), University of Michigan

	
	Zesta, M. Moldwin (Co-I),

	Solar Probe Analyzer for Ions (SPAN-I)

	University of California, Berkeley (UCB), Space Sciences Laboratory (SSL)

	
	Livi

3. Conventions

All HERMES scientific data products that will be shared between HERMES entities (e.g.
ITFs, IDS groups) or made available to the general research community will be stored as
CDF data files and are expected to be compatible with CDF version 3.5. Data that will
not be shared beyond an individual team may be stored in any format that is convenient
for that team.

3.1 Science Product Naming Conventions

The HERMES data products will be produced with the following filename format where
the individual identifying components are described in Table 3-1. Additionally, to ensure
software compatibility between disparate systems, filenames will consist of all lowercase
characters. Filenames are used as a system identifier for a logical grouping of data and
are also stored in the Logical_file_id global attribute field (see Section 4.1). It is
expected that filenames will be created dynamically from the attributes identified in
Section 4 of this document.

	Filename Format
	scId_instrumentId_mode_dataLevel_optionalDataProductDescriptor_startTime_vX.Y.Z.ext

Table 3-1: Filename Component Description

	Short Name

	Description

	Valid Options

	scID

	Spacecraft ID

	hermes

	instrumentId

	Instrument or investigation identifier shortened to three letter acronym.

	eea, mrt, nms, spn

	mode

	TBS

	TBS

	dataLevel

	The level to which the data product has been processed

	l0, l1, ql, l2, l3, l4

	optionalDataProductDescriptor

	This is an optional field that may not be needed for all products. Where it is used, identifier should be short (e.q. 3-8 characters) descriptors that are helpful to end-users. If a descriptor contains multiple components, underscores are used to separate those components.

	An optional time span may be specified as “2s” to represent a data file that spans two seconds. In this case, “10s” and “5m” are other expected values that correspond with ten seconds and 5 minutes respectively.

	startTime

	The start time of the contained data given in ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] format.

	20230519T000003

	vX.Y.Z

	The 3-part version number of the data product. Full description of this identifier is provided in Section 3.1.1 of this document.

	v0.0.0, v

	.ext

	The required file extension, where CDF is required.

	cdf

3.1.1 Version Numbering Guidelines

The three-part version number contains the interface number, quality number, and bug
fix/revision number. The initial release of CDF data that is suitable for scientific
publication should begin with “v1.Y.Z”. Each component of the version number is
incremented in integer steps, as needed, and Table 3-2 describes the instances in which
the value should be incremented. Release “v0.Y.Z” may be used for early development
purposes.

Table 3-2: Version Numbering Guidelines

	Part

	Name

	Description

	X

	Interface Number

	Increments in this number represent a significant change to the processing software and/or to the content/structure of the file. These changes may be incompatible with existing code. Increments in this number may require code changes to software.

	Y

	Quality Number

	This number represents a change in the quality of the data in the file, such as change in calibration or increase in fidelity. Changes should not impact software but may require consideration when processing data.

	Z

	Bug Fix / Revision Number

	This number changes to indicate minor changes to the contents of the file due to reprocessing of missing data. Any dependent data products should generally be reprocessed if this value changes.

4. Global Attributes

Global attributes are used to provide information about the data set as an entity. Together
with variables and variable attributes, the global attributes make the data correctly and
independently usable by someone not connected with the instrument team, and hence, a
good archive product.

The required, recommended, and optional global attributes that have been identified for
use with HERMES data products are listed below. Additional global attributes can be
defined but they must start with a letter and can otherwise contain letters, numbers, and
the underscore character (no other special characters allowed). Note that CDF attributes
are case-sensitive and must exactly follow what is shown here.

Detailed descriptions of the attributes listed below are available at the ISTP/IACG Global
Attributes Webpage [http://spdf.gsfc.nasa.gov/istp_guide/gattributes.html].

4.1 Required Global Attributes

The following global attributes shown in Table 4-1 are required with HERMES data products.
HERMES-specific values are provided where applicable. For each attribute the following
information is provided:

	description: (str [https://docs.python.org/3/library/stdtypes.html#str]) A brief description of the attribute

	default: (str [https://docs.python.org/3/library/stdtypes.html#str]) The default value used if none is provided

	derived: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attibute can be derived by the HERMES
HermesDataSchema class

	required: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attribute is required by HERMES standards

	validate: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attribute is included in the
validate() checks (Note, not all attributes that
are required are validated)

	overwrite: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the HermesDataSchema
attribute derivations will overwrite an existing attribute value with an updated
attribute value from the derivation process.

Note that this table is derived from hermes_core/data/hermes_default_global_cdf_attrs_schema.yaml

Table 4-1: Required Global Attributes

	Attribute

	description

	default

	derived

	required

	validate

	overwrite

	CDF_Lib_version

	Version of the CDF Binaries library used to generate the CDF File

	
	True

	True

	False

	False

	DOI

	DOI is a persistent Unique Digital Identifier with the form https://doi.org/<PREFIX>/<SUFFIX> with the <PREFIX> identifying the DOI registration authority and the <SUFFIX> identifying the dataset. The DOI should point to a landing page for additional information about the dataset. DOIs are typically created by the SPASE naming authority or archive.

	
	False

	True

	True

	False

	Data_level

	This attribute is used in file name creation and records the level of processsing done on the dataset. For HERMES the following are valid values: - l0>Level 0 - l1>Level 1 - l2>Level 2 - l3>Level 3 - l4>Level 4 - ql>Quicklook

	
	False

	True

	False

	True

	Data_product_descriptor

	This is an optional field that may not be needed for all products. Where it is used, identifier should be short (e.q. 3-8 characters) descriptors that are helpful to end- users. If a descriptor contains multiple components, underscores are used to separate those components.

	
	False

	False

	False

	True

	Data_type

	This attribute is used by CDF file writing software to create a filename. It is a combination of the following filename components: mode, data level, and optional data product descriptor.

	
	True

	True

	False

	True

	Data_version

	This attribute identifies the version (vX.Y.Z) of a particular CDF data file.

	
	False

	True

	True

	False

	Descriptor

	This attribute identifies the name of the instrument or sensor that collected the data. Both a long name and a short name are given. For any data file, only a single value is allowed. For HERMES, the following are valid values: - EEA>Electron Electrostatic Analyzer - MERIT>Miniaturized Electron pRoton Telescope - NEMISIS> Noise Eliminating Magnetometer In a Small Integrated System - SPAN-I>Solar Probe Analyzer for Ions

	
	False

	True

	True

	False

	Discipline

	This attribute describes both the science discipline and sub discipline. For HERMES, this value should always be “Space Physics>Magnetospheric Science.”

	Space Physics>Magnetospheric Science

	False

	True

	True

	False

	Generation_date

	Date stamps the creation of the file using the syntax yyyymmdd, e.g., “

	
	True

	True

	True

	True

	HERMES_version

	Version of hermes_core originally used to generate the given CDF File

	
	True

	True

	False

	False

	HTTP_LINK

	The ‘HTTP_LINK’, ‘LINK_TEXT’, and ‘LINK_TITLE’ attributes store the URL with a description of this dataset at the HERMES SDC. The use of HTTP_LINK attribute requires the existence and equal number of corresponding LINK_TEXT and LINK_TITLE attributes. If text is not needed for these attributes, use an empty string “”.

	
	False

	True

	True

	False

	Instrument_mode

	TBS

	
	False

	True

	False

	False

	Instrument_type

	This attribute is used to facilitate making choices of instrument type. More than one entry is allowed. Acceptable values for HERMES include: - Magnetic Fields (space) - Particles (space) - Plasma and Solar Wind - Ephemeris -> Ephemeris/Attitude/Ancillary

	
	False

	True

	True

	False

	LINK_TEXT

	The ‘HTTP_LINK’, ‘LINK_TEXT’, and ‘LINK_TITLE’ attributes store the URL with a description of this dataset at the HERMES SDC. The use of HTTP_LINK attribute requires the existence and equal number of corresponding LINK_TEXT and LINK_TITLE attributes. If text is not needed for these attributes, use an empty string “”.

	
	False

	True

	True

	False

	LINK_TITLE

	The ‘HTTP_LINK’, ‘LINK_TEXT’, and ‘LINK_TITLE’ attributes store the URL with a description of this dataset at the HERMES SDC. The use of HTTP_LINK attribute requires the existence and equal number of corresponding LINK_TEXT and LINK_TITLE attributes. If text is not needed for these attributes, use an empty string “”.

	
	False

	True

	True

	False

	Logical_file_id

	This attribute stores the name of the CDF file but without the file extension (e.g. “.cdf”). This attribute is required to avoid loss of the original source in the case of accidental (or intentional) renaming.

	
	True

	True

	True

	True

	Logical_source

	This attribute determines the file naming convention in the SKT Editor and is used by CDA Web. It is composed of the following values: - source_name - (e.g. spacecraft identifier) - descriptor - (e.g. instrument identifier - see Section Error! Reference source not found.) - data_type - (e.g. mode, data level, and optional data product descriptor - value come from ‘Data_type’ attribute)

	
	True

	True

	True

	True

	Logical_source_description

	This attribute writes out the full words associated with the encrypted Logical_source above, e.g., “Level 1 Dual Electron Spectrometer Survey Data”. Users on CDAWeb see this value on their website.

	
	True

	True

	True

	True

	MODS

	This attribute is an SPDF standard global attribute, which is used to denote the history of modifications made to the CDF data set. The MODS attribute should contain a description of all significant changes to the data set, essentially capturing a log of high- level release notes. This attribute can have as many entries as necessary and should be updated if the Interface Number (“X”) of the version number changes.

	
	False

	True

	True

	False

	Mission_group

	This attribute has a single value and is used to facilitate making choices of source through CDAWeb. This value should be “HERMES.”

	HERMES

	False

	True

	True

	False

	PI_affiliation

	This attribute value should include the HERMES mission PI affiliation followed by a comma-separated list of any Co-I affiliations that are responsible for this particular dataset. The following are valid HERMES values, of which the abbreviations should be used exclusively within this attribute value, and the full text of the affiliation included in the general ‘text’ attribute as it is used solely in plot labels. - GSFC - Goddard Space Flight Center - UCB - University of California, Berkeley - SSL - Space Sciences Laboratory, UCB - UM - University of Michigan

	
	False

	True

	True

	False

	PI_name

	This attribute value should include first initial and last name of the HERMES mission PI followed by a comma-separated list of any Co-Is that are responsible for this particular dataset.

	
	False

	True

	True

	False

	Project

	This attribute identifies the name of the project and indicates ownership. For HERMES, this value should be “STP>Solar-Terrestrial Physics”.

	STP>Solar-Terrestrial Physics

	False

	True

	True

	False

	Source_name

	This attribute identifies the observatory where the data originated. The following are valid values for HERMES: - HERMES>Heliophysics Environmental and Radiation Measurement Experiment Suite

	HERMES>Heliophysics Environmental and Radiation Measurement Experiment Suite

	False

	True

	True

	False

	Start_time

	The start time of the contained data given in YYYYMMDD_hhmmss

	
	True

	True

	False

	True

	TEXT

	This attribute is an SPDF standard global attribute, which is a text description of the experiment whose data is included in the CDF. A reference to a journal article(s) or to a World Wide Web page describing the experiment is essential and constitutes the minimum requirement. A written description of the data set is also desirable. This attribute can have as many entries as necessary to contain the desired information. Typically, this attribute is about a paragraph in length and is not shown on CDAWeb. CDAWeb is the web portal for access to SPDF data, available at https://cdaweb.gsfc.nasa.gov.

	
	False

	True

	True

	False

4.2 Recommended Attributes

The following global attributes are recommended but not required with HERMES data
products. HERMES-specific values are provided where applicable.

Table 4-2: Recommended Attributes

	Attribute

	Description

	Acknowledgement

	This field indicates how the data should be cited.

	Generated_by

	This attribute indicates where users can get more information about this data and/or check for new versions.

4.3 Optional Attributes

Table 4-2: Optional Attributes

	Attribute

	Description

	Parents

	This attribute lists the parent data files for files of derived and merged data sets. The syntax for a CDF parent is: “CDF>logical_file_id”. Multiple entry values are used for multiple parents. This attribute is required for any HERMES data products that are derived from 2 or more data sources and the file names of parent data should be clearly identified. CDF parents may include source files with non-cdf extensions.

	Skeleton_version

	This is a text attribute containing the skeleton file version number.

	Rules_of_use

	Text containing information on citability and/or PI access restrictions. This may point to a World Wide Web page specifying the rules of use. Rules of Use are determined on both a mission and instrument basis, at the discretion of the PI.

	Time_resolution

	Specifies time resolution of the file, e.g., “3 seconds”.

5. Variables

There are three types of variables that should be included in CDF files:
* data,
* support data,
* metadata.

Additionally, required attributes are listed with each variable type listed
below.

To facilitate data exchange and software development, variable names should be
consistent across the HERMES instruments and four spacecraft. Additionally, it is
preferable that data types are consistent throughout all HERMES data products (e.g. all
real variables are CDF_REAL4, all integer variables are CDF_INT2, and flag/status
variables are UINT2). This is not to imply that only these data types are allowable within
HERMES CDF files. All CDF supported data types are available for use by HERMES.

For detailed information and examples, please see the ISTP/IACG Webpage

5.1 Data

These are variables of primary importance (e.g., density, magnetic field, particle flux).
Data is always time (record) varying but can be of any dimensionality or CDF supported
data type. Real or Integer data are always defined as having one element.

5.1.1 Naming

HERMES data variables must adhere to the following naming convention
* scId_instrumentId_paramName

An underscore is used to separate different fields in the variable name. It is strongly
recommended that variable names employ further fields, qualifiers and information
designed to identify unambiguously the nature of the variable, instrument mode and data
processing level, with sufficient detail to lead the user to the unique source file which
contains the variable. It is recommended that these follow the order shown below.

	scId_instrumentId_paramName[_coordSys][_paramQualifier][_subModeLevel][_mode][_dataLevel]

where the required fields are described in Table 5-1 and the optional fields are described
in Table 5-2. An example data variable would be hermes_eea_n_gse_l2.

Table 5-1: Required Data Variable Fields

	Required Field Name

	Description

	scId

	Spacecraft identifier, see Table 3-1 for acceptable values

	instrumentId

	Instrument or investigation identifier, see Table 3-1 for acceptable values and note the caveats listed in Section 5.1.1.1.

	paramName

	Data parameter identifier, a short (a few letters) representation of the physical parameter held in the variable.

Table 5-2: Optional Data Variable Fields

	Optional Field Name

	Description

	coordSys

	An acronym for the coordinate system in which the parameter is cast.

	paramQualifier

	Parameter descriptor, which may include multiple components separated by a “_” as needed (e.g. “pa_0” indicates a pitch angle of 0).

	subModeLevel

	Qualifier(s) to include mode and data level information supplementary to the following two fields.

	mode

	See Table 3-1 for acceptable values.

	dataLevel

	See Table 3-1 for acceptable values.

5.1.1.1 Caveats

Note the following caveats in the variable naming conventions:

	CDF variable names must begin with a letter and can contain numbers and underscores, but no other special characters.

	In general, the instrumentId field follows the convention used for file names as defined in Section 3.1.
However, since variable names cannot contain a hyphen, an underscore should be used instead of a hyphen when needing to separate
instrument components. For instance, “eea-ion” is a valid instrumentId in a
filename but when used in a variable name, “eea_ion” should be used instead.

	To ensure software compatibility between disparate systems, parameter names
will consist of all lowercase characters.

5.1.2 Required Epoch Variable

All HERMES CDF data files must contain at least one variable of data type
CDF_TIME_TT2000, typically named “Epoch”. This variable should normally be the
first variable in each CDF data set. All time varying variables in the CDF data set will
depend on either this “epoch” variable or on another variable of type
CDF_TIME_TT2000 (e.g. hermes_eea_epoch). More than one CDF_TIME_TT2000
type variable is allowed in a data set to allow for more than one time resolution, using the
required DEPEND_0 attribute (see Section 5.5) to associate a time variable to a given
data variable. It is recommended that all such time variables use “epoch” within their
variable name.

For ISTP, but not necessarily for all HERMES data, the time value of a record refers
to the center of the accumulation period for the record if the measurement is not an
instantaneous one. All HERMES time variables used as DEPEND_0 are strongly
recommended to have DELTA_PLUS_VAR and DELTA_MINUS_VAR attributes which delineate the
time interval over which the data was sampled, integrated, or otherwise representative
of. This also locates the timetag within that interval.

The epoch datatype, CDF_TIME_TT2000, is defined as an 8-byte signed integer with the
characteristics shown in Table 5-3.

Table 5-3: Characteristics of CDF_TIME_TT2000

	Name

	Example

	time_base

	J2000 (Julian date 2451545.0 TT or 2000 January 1, 12h TT)

	resolution

	nanoseconds

	time_scale

	Terrestrial Time (TT)

	units

	nanoseconds

	reference_position

	rotating Earth Geoid

Given a current list of leap seconds, conversion between TT and UTC is straightforward
(TT = TAI + 32.184s; TT = UTC + deltaAT + 32.184s, where deltaAT is the sum of the
leap seconds since 1960; for example, for 2009, deltaAT = 34s). Pad values of -
9223372036854775808 (0x8000000000000000) which corresponds to 1707-09-
22T12:13:15.145224192; recommended FILLVAL is same.

It is proposed that the required data variables VALIDMIN and VALIDMAX are given values
corresponding to the dates 1990-01-01T00:00:00 and 2100-01-01T00:00:00 as these are well
outside any expected valid times.

5.1.3 Required Attributes: Data Variables

Data variables require the following attributes:

	CATDESC

	DEPEND_0

	DEPEND_i [for dimensional data variables]

	DISPLAY_TYPE

	FIELDNAM

	FILLVAL

	FORMAT or FORM_PTR

	LABLAXIS or LABL_PTR_i

	SI_CONVERSION

	UNITS or UNIT_PTR

	VALIDMIN and VALIDMAX

	VAR_TYPE

In addition, the following attributes are strongly recommended for vectors, tensors and
quaternions which are held in or relate to a particular coordinate system:

	COORDINATE_SYSTEM

	TENSOR_ORDER

	REPRESENTATION_i

	OPERATOR_TYPE [for quaternions]

5.1.4 Attributes for DEPEND_i Variables

Variables appearing in a data variable’s DEPEND_i attribute require a minimal set of
their own attributes to fulfill their role in supporting the data variable. The standard
SUPPORT_DATA variable attributes are listed in Section 5.3.2.
Other standard variable attributes are optional.

5.2 Quaternions

HERMES mec files contain unit quaternions which can be employed to rotate from one
coordinate system to the other. For an arbitrary rotation, that rotational information can
expressed as a rotation through an angle θ about a unit vector u. The Wikipedia page on
“Quaternions and Spatial Rotation” provides details and the relationship between the
quaternion and a 3x3 rotation matrix. In the mec files, quaternions are represented by:

q = (qx, qy, qz, qw)

in which qw (also known elsewhere as qc) = cos (θ/2) and (qx, qy, qz) = u sin (θ/2).
Extensions of existing attribute standards are strongly recommended to be used to
describe such quaternions. The following attributes serve this purpose:

	OPERATOR_TYPE=UNIT_QUATERNION

	REPRESENTATION_1 = “x”, “y”, “z”, “c” [in the right order; the “c” denotes the cosineterm]

	COORDINATE_SYSTEM=XXX [standard syntax, as for vectors; the FROM frame]

	TO_COORDINATE_SYSTEM=YYY [same syntax; the TO frame]

Such a quaternion will take a vector given in the XXX coordinate system and generate its
components in the YYY coordinate system.

5.3 Support Data

These are variables of secondary importance employed as DEPEND_i variables as
described in section 5.1.3 (e.g., time, energy_bands associated with particle flux), but
they may also be used for housekeeping or other information not normally used for
scientific analysis.

5.3.1 Naming

Support data variable names must begin with a letter and can contain numbers and
underscores, but no other special characters. Support data variable names need not follow
the same naming convention as Data Variables (5.1.1) but may be shortened for
convenience.

5.3.2 Required Attributes: Support Variables

	CATDESC

	DEPEND_0 (if time varying)

	FIELDNAM

	FILLVAL (if time varying)

	FORMAT/FORM_PTR

	LABLAXIS or LABL_PTR_i

	SI_CONVERSION

	UNITS/UNIT_PTR

	VALIDMIN (if time varying)

	VALIDMAX (if time varying)

	VAR_TYPE = “support_data”

Other attributes may also be present.

5.4 Metadata

These are variables of secondary importance (e.g. a variable holding “Bx”, “By”, “Bz” to
label magnetic field). Metadata are usually text strings as opposed to the numerical values
held in DEPEND_i support data.

5.4.1 Naming

Metadata variable names must begin with a letter and can contain numbers and
underscores, but no other special characters. Metadata variable names need not follow the
same naming convention as Data Variables (5.1.1) but may be shortened for convenience.

5.4.2 Required Attributes: Metadata Variables

	CATDESC

	DEPEND_0 (if time varying, this value must be “Epoch”)

	FIELDNAM

	FILLVAL (if time varying)

	FORMAT/FORM_PTR

	VAR_TYPE = metadata

5.5 Variable Attribute Schema

The following variable attributes shown in Table 5-4 are required with HERMES data products.
HERMES-specific values are provided where applicable. For each attribute the following
information is provided:

	description: (str [https://docs.python.org/3/library/stdtypes.html#str]) A brief description of the attribute

	derived: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attibute can be derived by the HERMES
HermesDataSchema class

	required: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attribute is required by HERMES standards

	overwrite: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the HermesDataSchema
attribute derivations will overwrite an existing attribute value with an updated
attribute value from the derivation process.

	valid_values: (list [https://docs.python.org/3/library/stdtypes.html#list]) List of allowed values the attribute can take for HERMES products,
if applicable

	alternate: (str [https://docs.python.org/3/library/stdtypes.html#str]) An additional attribute name that can be treated as an alternative
of the given attribute. Not all attributes have an alternative and only one of a given
attribute or its alternate are required.

	var_types: (str [https://docs.python.org/3/library/stdtypes.html#str]) A list of the variable types that require the given
attribute to be present.

Note that this table is derived from hermes_core/data/hermes_default_variable_cdf_attrs_schema.yaml

Table 5-4 HERMES Variable Attribute Schema

	Attribute

	description

	derived

	required

	overwrite

	valid_values

	alternate

	var_types

	TIME_BASE

	fixed (0AD, 1900, 1970 (POSIX), J2000 (used by CDF_TIME_TT2000), 4714 BC (Julian)) or flexible (provider-defined)

	True

	True

	False

	
	
	

	RESOLUTION

	Using ISO8601 relative time format, for example: “1s” = 1 second. Resolution provides the smallest change in time that is measured.

	True

	True

	False

	
	
	

	TIME_SCALE

	TT (same as TDT, used by CDF_TIME_TT2000), TAI (same as IAT, TT-32.184s), UTC (includes leap seconds), TDB (same as SPICE ET), EME1950 [default: UTC]

	True

	True

	False

	
	
	

	REFERENCE_POSITION

	Topocenter (local), Geocenter , rotating Earth geoid (used by CDF_TIME_TT2000). Reference_Position is optional metadata to account for time variance with position in the gravity wells and with relative velocity. While we could use a combined TimeSystem attribute that defines mission-specific time scales where needed, such as UTC-at-STEREO-B, it’s cleaner to keep them separate as Time_Scale=UTC and Reference_Position=STEREO-B.

	True

	True

	False

	
	
	

	LEAP_SECONDS_INCLUDED

	comma-delimited list (within brackets) of leap seconds included in the form of a lists of ISO8601 times when each leap second was added, appended with the size of the leap second in ISO8601 relative time (+/- time, most commonly: “+1s”) [default: standard list of leap seconds up to time of data]. Leap_Seconds_Included is needed to account for time scales that don’t have all 34 (in 2009) leap seconds and for the clocks in various countries that started using leap seconds at different times. The full list is required to handle the equally or more common case where a time scale starts at a pecific UTC but continues on without leap seconds in TAI mode; this is basically what missions that don’t add leap seconds are doing. $ cat tai-utc.dat | awk ‘ORS=”,” { val = $7 - prev } {prev = $7} { print $1$2”01+” val “s” }’

	False

	False

	False

	
	
	

	ABSOLUTE_ERROR

	Absolute or systematic error, in same units as Units attribute.

	False

	False

	False

	
	
	

	RELATIVE_ERROR

	Relative or random error, in same units as Units attribute - to specify the accuracy of the time stamps relative to each other. This is usually much smaller than Absolute_Error.

	False

	False

	False

	
	
	

	BIN_LOCATION

	relative position of time stamp to the data measurement bin, with 0.0 at the beginning of time bin and 1.0 at the end. Default is 0.5 for the time at the center of the data measurement. Since clock readings are usually truncated, the real value may be closer to 0.0.

	False

	False

	False

	
	
	

	CATDESC

	This is a human readable description of the data variable. Generally, this is an 80- character string which describes the variable and what it depends on.

	False

	True

	False

	
	
	data support_data metadata

	DELTA_MINUS_VAR

	DEPEND_i variables are typically physical values along the corresponding i-th dimension of the parent data variable, such as energy levels or spectral frequencies. The discreet set of values are located with respect to the sampling bin by DELTA_PLUS_VAR and DELTA_MINUS_VAR, which hold the variable name containing the distance from the value to the bin edge. It is strongly recommended that HERMES DEPEND_i variables include DELTA_PLUS_VAR and DELTA_MINUS_VAR attributes that point to the appropriate variable(s) located elsewhere in the CDF file.

	False

	False

	False

	
	
	

	DELTA_PLUS_VAR

	DEPEND_i variables are typically physical values along the corresponding i-th dimension of the parent data variable, such as energy levels or spectral frequencies. The discreet set of values are located with respect to the sampling bin by DELTA_PLUS_VAR and DELTA_MINUS_VAR, which hold the variable name containing the distance from the value to the bin edge. It is strongly recommended that HERMES DEPEND_i variables include DELTA_PLUS_VAR and DELTA_MINUS_VAR attributes that point to the appropriate variable(s) located elsewhere in the CDF file.

	False

	False

	False

	
	
	

	DEPEND_0

	Explicitly ties a data variable to the time variable on which it depends. All variables which change with time must have a DEPEND_0 attribute defined. See section 5.2.1 which specifies the HERMES usage of DEPEND_0.

	True

	True

	False

	
	
	data

	DEPEND_i

	Ties a dimensional data variable to a SUPPORT_DATA variable on which the i-th dimension of the data variable depends. The number of DEPEND attributes must match the dimensionality of the variable, i.e., a one-dimensional variable must have a DEPEND_1, a two-dimensional variable must have a DEPEND_1 and a DEPEND_2 attribute, etc. The value of the attribute must be a variable in the same CDF data set. It is strongly recommended that DEPEND_i variables hold values in physical units. DEPEND_i variables also require their own attributes, as described in section 5.1.4.

	False

	False

	False

	
	
	

	DISPLAY_TYPE

	This tells automated software, such as CDAWeb, how the data should be displayed.

	True

	True

	False

	time_series time_series>noerrorbars spectrogram stack_plot image

	
	data

	FIELDNAM

	A shortened version of CATDESC which can be used to label a plot axis or as a data listing heading. This is a string, up to ~30 characters in length.

	True

	True

	False

	
	
	data support_data metadata

	FILLVAL

	Identifies the fill value used where data values are known to be bad or missing. FILLVAL is required for time-varying variables. Fill data are always non-valid data. The ISTP standard fill values are listed in Table 5-4.

	True

	True

	False

	
	
	data support_data metadata

	FORMAT

	This field allows software to properly format the associated data when displayed on a screen or output to a file. Format can be specified using either Fortran or C format codes. For instance, “F10.3” indicates that the data should be displayed across 10 characters where 3 of those characters are to the right of the decimal. For a description of FORTRAN formatting codes see the docs here: https://docs.oracle.com/cd/E19957-01/805-4939/z40007437a2e/index.html

	True

	True

	False

	
	FORM_PTR

	data support_data metadata

	FORM_PTR

	The value of this field is a variable which stores the character string that represents the desired output format for the associated data.

	False

	False

	False

	
	FORMAT

	

	LABLAXIS

	Used to label a plot axis or to provide a heading for a data listing. This field is generally 6-10 characters. Only one of LABLAXIS or LABL_PTR_i should be present.

	True

	True

	False

	
	LABL_PTR_1

	data support_data

	LABL_PTR_i

	Used to label a dimensional variable when one value of LABLAXIS is not sufficient to describe the variable or to label all the axes. LABL_PTR_i is used instead of LABLAXIS, where i can take on any value from 1 to n where n is the total number of dimensions of the original variable. The value of LABL_PTR_1 is a variable which will contain the short character strings which describe the first dimension of the original variable. The value of the attribute must be a variable in the same CDF data set and is generally 6-10 characters. Only one of LABLAXIS or LABL_PTR_i should be present.

	False

	False

	False

	
	LABLAXIS

	

	SI_CONVERSION

	The conversion factor to SI units. This is the factor that the variable must be multiplied by in order to convert it to generic SI units. This parameter contains two text fields separated by the “>” delimiter. The first component is the conversion factor and the second is the standard SI unit. Units are defined according to their standard SI symbols (ie. Tesla = T, Newtons = N, Meters = m, etc.) For data variables that are inherently unitless, and thus lack a conversion factor, this data attribute will be “ > “ where ‘ ‘ is a blank space and the quotation marks are not included. Units which are not conveniently transformed into SI should follow the blank syntax “ > “ described above.

	True

	True

	False

	
	
	data support_data

	UNITS

	A 6-20 character string that identifies the units of the variable (e.g. nT for magnetic field). Use a blank character, rather than “None” or “unitless”, for variables that have no units (e.g., a ratio or a direction cosine). An active list of HERMES standard UNITS and their SI_CONVERSIONs is maintained on the mission web-pages at https://lasp.colorado.edu/galaxy/display/HERMES/Units+of+Measure, accessible via the HERMES Science Working Team pages. Those pages also lay out the rules for formatting the UNITS string.

	True

	True

	False

	
	UNIT_PTR

	data support_data

	UNIT_PTR

	The value of this field is a variable which stores short character strings which identify the units of the variable. Use a blank character, rather than “None” or “unitless”, for variables that have no units (e.g., a ratio or a direction cosine). The value of this attribute must be a variable in the same CDF data set.

	False

	False

	False

	
	UNITS

	

	VALIDMIN

	The minimum value for a particular variable that is expected over the lifetime of the mission. Used by application software to filter out values that are out of range. The value must match the data type of the variable.

	True

	True

	False

	
	
	data support_data

	VALIDMAX

	The maximum value for a particular variable that is expected over the lifetime of the mission. Used by application software to filter out values that are out of range. The value must match the data type of the variable.

	True

	True

	False

	
	
	data support_data

	VAR_TYPE

	Used in CDAWeb to indicate if the data should be used directly by users.

	True

	True

	False

	data support_data metadata ignore_data

	
	data support_data metadata

	COORDINATE_SYSTEM

	All variables for which the values are dependent on the system of coordinates are strongly recommended to have this attribute. This includes both full vectors, tensors, etc. or individual values, e.g. of an angle with respect to some axis. The attribute is a text string which takes the form: “XXX[>optional long name]”

	False

	False

	False

	
	
	

	TENSOR_ORDER

	All variables which hold physical vectors, tensors, etc., or sub-parts thereof, are strongly recommended to have their tensorial properties held by this numerical value. Vectors have TENSOR_ORDER=1, pressure tensors have TENSOR_ORDER=2, etc. Variables which hold single components or sub-parts of a vector or tensor, e.g., the x-component of velocity or the three diagonal elements of a tensor, use this attribute to establish the underlying object from which they are extracted. TENSOR_ORDER is a number, usually held as a CDF_INT4, rather than a character string.

	False

	False

	False

	
	
	

	REPRESENTATION_i

	This strongly recommended attribute holds the way vector or tensor variables are held, e.g., as Cartesian or polar forms, and their sequence order in the dimension i in which they are held. Cartesians are indicated by x,y,z; polar coordinates by r (magnitude), t (theta - from z-axis), p (phi - longitude or azimuth around z-axis from x axis), l (lambda = latitude). Examples follow.

	False

	False

	False

	
	
	

	OPERATOR_TYPE

	This has been introduced to describe HERMES quaternions (see Section 5.2 below). It has allowed values “UNIT_QUATERNION” or “ROTATION_MATRIX” although other values could be added. Unit quaternions correspond to pure spatial rotations.

	False

	False

	False

	
	
	

	WCSAXES

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. The value field shall contain a non-negative integer no greater than 999, representing the number of axes in the associated data array.

	True

	False

	False

	
	
	

	MJDREF

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. The value shall contain a floating point number representing the reference time position of the time stamps along the 0’th axis of the measurement.

	True

	False

	False

	
	
	

	TIMEUNIT

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. The value shall contain a character string giving the units of the time stamps along the 0’th axis of the measurement. The TIMEUNIT should match the CUNITi along the time axis of the measurement

	True

	False

	False

	
	
	

	TIMEDEL

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. The value shall contain a floating point number representing the resolution of the time stamps along the 0’th axis of the measurement. The TIMEDEL should match the CRDELi along the time axis of the measurement.

	True

	False

	False

	
	
	

	CNAMEi

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. This metadata attribte should be used for the i’th dimension (1-based) and reapeated for all WCSAXES dimensions. The value shall contain a charachter string represnting the name of the i’th axis. The name is used for comment/documentation purposes only and is not used as a part of the i’th axis coordinate transformations.

	True

	False

	False

	
	
	

	CTYPEi

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. This metadata attribte should be used for the i’th dimension (1-based) and reapeated for all WCSAXES dimensions. The value field shall contain a character string, giving the name of the coordinate represented by axis i.

	True

	False

	False

	
	
	

	CUNITi

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. This metadata attribte should be used for the i’th dimension (1-based) and reapeated for all WCSAXES dimensions. The value shall be the units along axis i, compatible with CTYPEi to be used for scaling and coordinate transformations along the i’th axis.

	True

	False

	False

	
	
	

	CRPIXi

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. This metadata attribte should be used for the i’th dimension (1-based) and reapeated for all WCSAXES dimensions. The value field shall contain a floating point number, identifying the location of a reference point along axis i, in units of the axis index. This value is based upon a counter that runs from 1 to NAXISn with an increment of 1 per pixel. The reference point value need not be that for the center of a pixel nor lie within the actual data array. Use comments to indicate the location of the index point relative to the pixel.

	True

	False

	False

	
	
	

	CRVALi

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. This metadata attribte should be used for the i’th dimension (1-based) and reapeated for all WCSAXES dimensions. The value field shall contain a floating point number, giving the value of the coordinate specified by the CTYPEn keyword at the reference point CRPIXi.

	True

	False

	False

	
	
	

	CDELTi

	This is a FITS WCS Keyword being repurposed for handling WCS transformations with high-dimensional or spectral CDF data variables. This metadata attribte should be used for the i’th dimension (1-based) and reapeated for all WCSAXES dimensions. The value field shall contain a floating point number giving the partial derivative of the coordinate specified by the CTYPEi keywords with respect to the pixel index, evaluated at the reference point CRPIXi, in units of the coordinate specified by the CTYPEi keyword.

	True

	False

	False

	
	
	

Customization and Global Configuration

The configrc file

This package uses a configrc configuration file to customize
certain properties. You can control a number of key features of such as
where your data will download to. HERMES packages look for this configuration file
in a platform specific directory, which you can see the path for by running:

>>> import hermes_core
>>> hermes_core.print_config()

Using your own configrc file

To maintain your own customizations, you must place your customized configrc inside the appropriate configuration folder (which is based off the operating system you are working on). The AppDirs module [https://github.com/sunpy/sunpy/blob/main/sunpy/extern/appdirs.py] provided by the sunpy [https://docs.sunpy.org/en/stable/reference/sunpy.html#module-sunpy] package is used to figure out where to look for your configuration file.

Warning

Do not edit the configrc file directly in the Python package as it will get overwritten every time you re-install or update the package.

You can copy the file below, customize it, and then place your customized configrc file inside your config folder.

If you work in our developer environment you can place your configuration file in this directory:

/home/vscode/.config/hermes_core/

If you do not use our developer environment, you can run the following code to see where to place it on your specific machine as well:

>>> from hermes_core import util
>>> print(util.config._get_user_configdir())
/home/vscode/.config/hermes_core

Note

For more information on where to place your configuration file depending on your operating system, you can refer to the AppDirs module docstrings [https://github.com/sunpy/sunpy/blob/1459206e11dc0c7bfeeeec6aede701ca60a8630c/sunpy/extern/appdirs.py#L165].

To learn more about how to set-up your development environment see Developer Environment.

See below (A sample configrc file) for an example configuration file.

Dynamic settings

You can also dynamically change most of the default settings. One setting that cannot be changed is the location of the log file which is set on import. All settings are stored in a Python ConfigParser instance called hermes_core.config, which is global to the package. Settings can be modified directly, for example:

import hermes_core
hermes_core.config.set('downloads', 'download_dir', '/home/user/Downloads')

A sample configrc file

(download)

;
; Configuration
;
; This is the default configuration file

;;;;;;;;;;;;;;;;;;;
; General Options ;
;;;;;;;;;;;;;;;;;;;
[general]

; Time Format to be used for displaying time in output (e.g. graphs)
; The default time format is based on ISO8601 (replacing the T with space)
; note that the extra '%'s are escape characters
time_format = %Y-%m-%d %H:%M:%S

;;;;;;;;;;;;;
; Downloads ;
;;;;;;;;;;;;;
[downloads]

; Location to save download data to. Path should be specified relative to the
; HERMES working directory.
; Default value: data/
download_dir = data

;;;;;;;;;;;;
; Logger ;
;;;;;;;;;;;;
[logger]

Threshold for the logging messages. Logging messages that are less severe
than this level will be ignored. The levels are 'DEBUG', 'INFO', 'WARNING',
'ERROR'
log_level = INFO

Whether to use color for the level names
use_color = True

Whether to log warnings.warn calls
log_warnings = True

Whether to log exceptions before raising them
log_exceptions = True

Whether to always log messages to a log file
log_to_file = True

The file to log messages to
log_file_path = hermes.log

Threshold for logging messages to log_file_path
log_file_level = INFO

Format for log file entries
log_file_format = %(asctime)s, %(origin)s, %(levelname)s, %(message)s

Logging system

Overview

The logging system is an adapted version of AstropyLogger [https://docs.astropy.org/en/stable/api/astropy.logger.AstropyLogger.html#astropy.logger.AstropyLogger].
Its purpose is to provide users the ability to decide which log and warning messages to show,
to capture them, and to send them to a file.

All messages provided by HERMES use this logging facility which is based
on the Python logging [https://docs.python.org/3/library/logging.html#module-logging] module rather than print statements.

Messages can have one of several levels, in increasing order of importance:

	DEBUG: Detailed information, typically of interest only when diagnosing
problems.

	INFO: A message conveying information about the current task, and
confirming that things are working as expected

	WARNING: An indication that something unexpected happened, and that user
action may be required.

	ERROR: indicates a more serious issue where something failed but the task is continuing

	CRITICAL: A serious error, indicating that the program itself may be unable to continue running.

By default, all messages except for DEBUG messages are displayed.

Configuring the logging system

The default configuration for the logger is determined by the default configuration file.
To make permanent changes to the logger configuration see the [logger] section of the configuration file (config).

If you’d like to control the logger configuration for your current session
first import the logger:

>>> from hermes_core import log

or also by:

>>> import logging
>>> log = logging.getLogger('hermes_core')

The threshold level for messages can be set with:

>>> log.setLevel('DEBUG')

This will display DEBUG and all messages with that level and above. If you’d like to see the fewest
relevant messages you’d set the logging level to WARNING or above.

For other options such as whether to log to a file or what level of messages the log file should
contain, see the the HERMES configuration file (config).

Context managers

If you’d like to
capture messages as they are generated you can do that with a context manager:

>>> from hermes_core import log
>>> with log.log_to_list() as log_list:
... # your code here

Once your code is executed, log_list will be a Python list containing all of the messages during execution.
This does not divert the messages from going to a file or to the screen.
It is also possible to send the messages to a custom file with:

>>> from hermes_core import log
>>> with log.log_to_file('myfile.log'):
... # your code here

which will save the messages to a local file called myfile.log.

Developer’s Guide

This article describes the guidelines to be followed by developers working on this repository.
If you are planning on contributing to this repository please read the following carefully.
This guide borrows heavily from those developed by the SunPy Project and is generally consistent with this community-developed approach.

	Developer Environment
	Visual Studio Code

	Coding Standards
	Language Standard

	Coding Style/Conventions

	Private code

	Utilities

	Formatting

	Documentation and Testing

	Data and Configuration

	Standard output, warnings, and errors

	Including C Code

	Testing Guidelines
	Writing tests

	Documentation Rules
	Overview

	Sphinx

	Workflow for Maintainers
	Integrating changes via the web interface (recommended)

	IOssue Milestones and Labels

	Updating and Maintaining the Changelog

	Releases

	Global Settings

Developer Environment

This Python package is used in the pipeline processing of scientific data from HERMES.
Special consideration is therefore required to ensure that development is compatible with the pipeline environment.
It is also important to ensure that this package is compatible with a user’s systems such as a mac and windows.

Visual Studio Code

Though not required, this packate designed for development in Visual Studio Code [https://code.visualstudio.com/] inside of a container managed by Docker.
This is the same environment that is used by the data processing pipeline.
All of the configuration required by VS Code are maintained in the devcontainer folder including the Dockerfile.
For more information see Developing inside a Container.

Setup

Follow these steps to set up VS Code.

	Download and install VS Code [https://code.visualstudio.com/].

	Download and install Docker. The easiest way to do that is to install Docker Desktop [https://www.docker.com/products/docker-desktop/].

	
	Open VS Code and add the following 2 extensions by navigating to View->Extensions.
	
	Docker

	Remote-Container

	Ensure that Docker is running by opening Docker Desktop. It will be required to build the container.

	Restart VS Code and open this repository using File->Open Folder. It might recognize that a container is defined and prompt you to Reopen in Container. Do so.

	If not, open the VS Code Command Palette by View->Command Palette (or Ctrl+Shift+P) and select: “Remote-Containers:Rebuild and Reopen in Container”

	VS Code should build and open the container (takes as much as 10-20 minutes the first time). You will see “Starting Dev Container (show log): Building image” in the bottom right corner. Click on “show log” to see details of the build. This requires Docker to be running.

	Once the build has finished, you will see information about the Dev Container in the bottom left.

	Exiting VS Code will close the docker container.

	The next time you open this folder with VS Code it should open in the built container. It should not have to rebuild the container unless the Dockerfile file has changed.

Coding Standards

The purpose of the page is to describe the standards that are expected of all the code in this repository.
All developers should read and abide by the following standards.
Code which does not follow these standards closely will generally not be accepted.

We try to closely follow the coding style and conventions proposed by Astropy [https://docs.astropy.org/en/stable/development/codeguide.html#coding-style-conventions].

Language Standard

	All code must be compatible with Python 3.7 and later.

	The new Python 3 formatting style should be used (i.e.
f"{spam:s}" instead of "%s" % "spam").

Coding Style/Conventions

	The code will follow the standard PEP8 Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/].
In particular, this includes using only 4 spaces for indentation, and never tabs.

	Follow the existing coding style within a file and avoid making changes that are purely stylistic.
Please try to maintain the style when adding or modifying code.

	Following PEP8’s recommendation, absolute imports are to be used in general.
We allow relative imports within a module to avoid circular import chains.

	The import numpy as np, import matplotlib as mpl, and import matplotlib.pyplot as plt naming conventions should be used wherever relevant.
from packagename import * should never be used (except in __init__.py)

	Classes should either use direct variable access, or Python’s property mechanism for setting object instance variables.

	Classes should use the builtin super [https://docs.python.org/3/library/functions.html#super] function when making calls to methods in their super-class(es) unless there are specific reasons not to.
super [https://docs.python.org/3/library/functions.html#super] should be used consistently in all subclasses since it does not work otherwise.

	Multiple inheritance should be avoided in general without good reason.

	__init__.py files for modules should not contain any significant implementation code. __init__.py can contain docstrings and code for organizing the module layout.

Private code

It is often useful to designate code as private, which means it is not part of the user facing API, only used internally by HERMES, and can be modified without a deprecation period.
Any classes, functions, or variables that are private should either:

	Have an underscore as the first character of their name, e.g., _my_private_function.

	If you want to do that to entire set of functions in a file, name the file with a underscore as the first character, e.g., _my_private_file.py.

Utilities

Within this reposiotory, it might be useful to have a set of utility classes or functions that are used by internally to help with certain tasks or to provide a certain level of abstraction.
These should be placed either:

	.{subpackage}.utils.py, if it is only used within that sub-package.

	.util if it is used across multiple sub-packages.

These can be private (see section above) or public.
The decision is up to the developer, but if these might be useful for other modules, they should be made public.
These utils may be taken up by the core repository if they are generally useful for other instrument teams.

Formatting

We enforce a minimum level of code style with our continuous intergration.
This runs a tool called pre-commit [https://pre-commit.com/].

The settings and tools we use for the pre-commit can be found in the file .pre-commit-config.yaml at the root of the HERMES git repository.
Some of the checks are:
* Checks (but doesn’t fix) various PEP8 issues with flake8.
* Sort all imports in any Python files with isort.
* Remove any unused variables or imports with autoflake.

We suggest you use “tox” (which is used to run the HERMES test suite) to run these tools without having to setup anything within your own Python virtual environment:

$ tox -e codestyle

This will inform you of what checks failed and why, and what changes (if any) the command has made to your code.

If you want to setup the pre-commit locally, you can do the following:

$ pip install pre-commit

Now you can do:

$ pre-commit run --all-files

which will run the tools on all files in the HERMES git repository.
The pre-commit tools can change some of the files, but in other cases it will report problems that require manual correction.
If the pre-commit tool changes any files, they will show up as new changes that will need to be committed.

Automate

Instead of running the pre-commit command each time you can install the git hook:

$ pre-commit install

which installs a command to .git/hooks/pre-commit which will run these tools at the time you do git commit and means you don’t have to run the first command each time.
We only suggest doing the install step if you are comfortable with git and the pre-commit tool.
If you are running inside of a Docker container but are managing git outside of it you will have to do this outside of the Docker.
This also means that you will have to install all of the dependencies on your local system.

By Hand

Sometimes it is easier to run things by hand.
First, let’s talk about Black.
If you are using the docker container and VS Code it format be formatting your code automatically.
If you want to check if all of your files are compatible with Black run the following

$ black –check folder_name

If you want it to go ahead and format the files remote --check.

Documentation and Testing

	American English is the default language for all documentation strings and inline commands.
Variables names should also be based on English words.

	Documentation strings must be present for all public classes/methods/functions, and must follow the form outlined in the Documentation Rules page.
Additionally, examples or tutorials in the package documentation are strongly recommended.

	Write usage examples in the docstrings of all classes and functions whenever possible.
These examples should be short and simple to reproduce–users should be able to copy them verbatim and run them.
These examples should, whenever possible, be in the doctests format and will be executed as part of the test suite.

	Unit tests should be provided for as many public methods and functions as possible, and should adhere to the standards set in the Testing Guidelines document.

Data and Configuration

	We store test data in ./data/test as long as it is less than about 100 kB.

	All persistent configuration should use the Global Settings mechanism.
Such configuration items should be placed at the top of the module or package that makes use of them, and supply a description sufficient for users to understand what the setting
changes.

Standard output, warnings, and errors

The built-in print(...) function should only be used for output that is explicitly requested by the user, for example print_header(...) or list_catalogs(...).
Any other standard output, warnings, and errors should follow these rules:

	For errors/exceptions, one should always use raise with one of the built-in exception classes, or a custom exception class (e.g. ValueError, TypeError).
The nondescript Exception class should be avoided as much as possible, in favor of more specific exceptions (IOError [https://docs.python.org/3/library/exceptions.html#IOError], ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], etc.).

	For warnings, use the appropriate custom warning classes (e.g. hermes_core.util.exceptions.HERMESWarning, hermes_core.util.exceptions.HERMESUserWarning) to enable them to be captured by the logging system.

	For debug messages, use the logging system log.debug() with a descriptive message.
Remember that users may access those messages as well.

Including C Code

	C extensions are only allowed when they provide a significant performance enhancement over pure Python, or a robust C library already exists to provided the needed functionality.

	The use of Cython [https://cython.org/] is strongly recommended for C extensions.

	If a C extension has a dependency on an external C library, the source code for the library should be bundled with the HERMES repository, provided the license for the C library is compatible with the HERMES license.
Additionally, the package must be compatible with using a system-installed library in place of the library included in HERMES.

	In cases where C extensions are needed but Cython [https://cython.org/] cannot be used, the PEP 7 Style Guide for C Code [https://www.python.org/dev/peps/pep-0007/] is recommended.

	C extensions (Cython [https://cython.org/] or otherwise) should provide the necessary information for building the extension.

Testing Guidelines

This section describes the testing framework and format standards for tests.
Here we have heavily adapted the Astropy version [https://docs.astropy.org/en/latest/development/testguide.html], and it is worth reading that link.

The testing framework used by HERMES is the pytest [https://pytest.org/en/latest/] framework, accessed through the pytest command.

Note

The pytest project was formerly called py.test, and you may
see the two spellings used interchangeably.

Writing tests

pytest has the following test discovery rules [https://pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery]:

* ``test_*.py`` or ``*_test.py`` files
* ``Test`` prefixed classes (without an ``__init__`` method)
* ``test_`` prefixed functions and methods

We use the first one for our test files, test_*.py and we suggest that developers follow this.

A rule of thumb for unit testing is to have at least one unit test per public function.

Where to put tests

Each package should include a suite of unit tests, covering as many of the public methods/functions as possible.
These tests should be included inside each package, e.g:

hermes_core/util/tests/

“tests” directories should contain an __init__.py file so that the tests can be imported.

doctests

Code examples in the documentation will also be run as tests and this helps to validate that the documentation is accurate and up to date.
We use the same system as Astropy, so for information on writing doctests see the astropy documentation [https://docs.astropy.org/en/latest/development/testguide.html#writing-doctests].

You do not have to do anything extra in order to run any documentation tests.
Within our setup.cfg file we have set default options for pytest, such that you only need to run:

$ pytest <rst to test>

to run any documentation test.

Bugs Testing

In addition to writing unit tests new functionality, it is also a good practice to write a unit test each time a bug is found, and submit the unit test along with the fix for the problem.
This way we can ensure that the bug does not re-emerge at a later time.

Documentation Rules

Overview

All code must be documented and we follow these style conventions described here:

	numpydoc [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard]

We recommend familiarizing yourself with this style.

Referring to other code

To link to other methods, classes, or modules in your repo you have to use backticks, for example:

`hermes_core.io.read_file`

generates a link like this: hermes_core.io.read_file.

Other packages can also be linked via
intersphinx [http://www.sphinx-doc.org/en/master/ext/intersphinx.html]:

`numpy.mean`

will return this link: numpy.mean [https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean].
This works for Python, Numpy and Astropy (full list is in docs/conf.py).

With Sphinx, if you use :func: or :meth:, it will add closing brackets to the link.
If you get the wrong pre-qualifier, it will break the link, so we suggest that you double check if what you are linking is a method or a function.

:class:`numpy.mean()`
:meth:`numpy.mean()`
:func:`numpy.mean()`

will return two broken links (“class” and “meth”) but “func” will work.

Project-specific Rules

	For all RST files, we enforce a one sentence per line rule and ignore the line length.

Sphinx

All of the documentation (like this page) is built by Sphinx [https://www.sphinx-doc.org/en/stable/], which is a tool especially well-suited for documenting Python projects.
Sphinx works by parsing files written using a a Mediawiki-like syntax [http://docutils.sourceforge.net/docs/user/rst/quickstart.html] called reStructuredText [http://docutils.sourceforge.net/rst.html].
It can also parse markdown files.
In addition to parsing static files of reStructuredText, Sphinx can also be told to parse code comments.
In fact, in addition to what you are reading right now, the Python documentation [https://www.python.org/doc/] was also created using Sphinx.

Usage and Building the documentation

All of the documentation is contained in the “docs” folder and code documentation strings.
Sphinx builds documentation iteratively, only adding things that have changed.
For more information on how to use Sphinx, consult the Sphinx documentation [http://www.sphinx-doc.org/en/stable/contents.html].

HTML

To build the html documentation locally use the follownig command, in the root directory run:

$ sphinx-build docs docs/_build/html -W -b html

This will generate HTML documentation in the “docs/_build/html” directory.
You can open the “index.html” file to browse the final product.

PDF

To build the pdf documentation locally use the follownig command, in the root directory run:

$ sphinx-build docs docs/_build/pdf -W -b pdf

This will generate HTML documentation in the “docs/_build/html” directory.
You can open the “index.html” file to browse the final product.

Workflow for Maintainers

This page is for maintainers who can merge our own or other peoples’ changes into the upstream repository.

Seeing as how you’re a maintainer, you should be completely on top of the basic git workflow in Developer’s Guide [https://docs.sunpy.org/en/stable/dev_guide/index.html#newcomers] and Astropy’s git workflow [https://docs.astropy.org/en/stable/development/workflow/development_workflow.html#development-workflow].

Integrating changes via the web interface (recommended)

Whenever possible, merge pull requests automatically via the pull request manager on GitHub.
Merging should only be done manually if there is a really good reason to do this!

Make sure that pull requests do not contain a messy history with merges, etc.
If this is the case, then follow the manual instructions, and make sure the fork is rebased to tidy the history before committing.

To check out a particular pull request to test out locally:

$ git checkout pr/999
Branch pr/999 set up to track remote branch pr/999 from upstream.
Switched to a new branch 'pr/999'

When to remove or combine/squash commits

In all cases, be mindful of maintaining a welcoming environment and be helpful with advice, especially for new contributors.
It is expected that a maintainer would offer to help a contributor who is a novice git user do any squashing that that maintainer asks for, or do the squash themselves by directly pushing to the PR branch.

Pull requests must be rebased and at least partially squashed (but not necessarily squashed to a single commit) if large (approximately >10KB) non-source code files (e.g. images, data files, etc.) are added and then removed or modified in the PR commit history (The squashing should remove all but the last addition of the file to not use extra space in the repository).

Combining/squashing commits is encouraged when the number of commits is excessive for the changes made.
The definition of “excessive” is subjective, but in general one should attempt to have individual commits be units of change, and not include reversions.
As a concrete example, for a change affecting < 50 lines of source code and including a changelog entry, more than a two commits would be excessive.
For a larger pull request adding significant functionality, however, more commits may well be appropriate.

As another guideline, squashing should remove extraneous information but should not be used to remove useful information for how a PR was developed.
For example, 4 commits that are testing changes and have a commit message of just “debug” should be squashed.
But a series of commit messages that are “Implemented feature X”, “added test for feature X”, “fixed bugs revealed by tests for feature X” are useful information and should not be squashed away without reason.

When squashing, extra care should be taken to keep authorship credit to all individuals who provided substantial contribution to the given PR, e.g. only squash commits made by the same author.

When to rebase

Pull requests must be rebased (but not necessarily squashed to a single commit) if:

	There are commit messages include offensive language or violate the code of conduct (in this case the rebase must also edit the commit messages)

Pull requests may be rebased (either manually or with the rebase and merge button) if:

	There are conflicts with main

	There are merge commits from upstream/main in the PR commit history (merge commits from PRs to the user’s fork are fine)

Asking contributors who are new to the project or inexperienced with using git is discouraged, as is maintainers rebasing these PRs before merge time, as this requires resetting of local git checkouts.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
$ git fetch upstream-rw

Rebase
$ git rebase upstream-rw/main

A long series of commits

If there are a longer series of related commits, consider a merge instead:

$ git fetch upstream-rw
$ git merge --no-ff upstream-rw/main

Note the --no-ff above.
This forces git to make a merge commit, rather than doing a fast-forward, so that these set of commits branch off trunk then rejoin the main history with a merge, rather than appearing to have been made directly on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have the right commits:

$ git log --oneline --graph
$ git log -p upstream-rw/main..

The first line above just shows the history in a compact way, with a text representation of the history graph.
The second line shows the log of commits excluding those that can be reached from trunk (upstream-rw/main), and including those that can be reached from current HEAD (implied with the .. at the end).
So, it shows the commits unique to this branch compared to trunk.
The -p option shows the diff for these commits in patch form.

Push to open pull request

Now you need to push the changes you have made to the code to the open pull request:

$ git push git@github.com:<username>/hermes_core.git HEAD:<name of branch>

You might have to add --force if you rebased instead of adding new commits.

IOssue Milestones and Labels

Current milestone guidelines:

	Only confirmed issues or pull requests that are release critical or for some other reason should be addressed before a release, should have a milestone.
When in doubt about which milestone to use for an issue, do not use a milestone and ask other the maintainers.

Current labelling guidelines:

	Issues that require fixing in main, but that also are confirmed to apply to supported stable version lines should be marked with a “Affects Release” label.

	All open issues should have a “Priority <level>”, “Effort <level>” and “Package <level>”, if you are unsure at what level, pick higher ones just to be safe.
If an issue is more of a question or discussion, you can omit these labels.

	If an issue looks to be straightforward, you should add the “Good first issue” and “Hacktoberfest” label.

	For other labels, you should add them if they fit, like if an issue affects the net submodule, add the “net” label or if it is a feature request etc.

Updating and Maintaining the Changelog

The changelog will be read by users, so this description should be aimed at HERMES users instead of describing internal changes which are only relevant to the developers.

The current changelog is kept in the file “CHANGELOG.rst” at the root of the repository.

Releases

We have a step by step checklist [https://github.com/HERMES-SOC/hermes_core/wiki/Release-Process] on the Wiki on how to make a release.

Global Settings

This package makes use of a settings file (configrc).
This file contains a number of global settings such as where files should be downloaded by default or the default format for displaying times.
When developing new functionality check this file and make use of the default values if appropriate or, if needed, define a new value.
More information can be found in Customization and Global Configuration.

API Reference

hermes_core Package

Functions

	print_config()

	Print current configuration options.

hermes_core.timedata Module

Container class for Measurement Data.

Classes

	HermesData(timeseries[, support, spectra, meta])

	A generic object for loading, storing, and manipulating HERMES time series data.

hermes_core.util Package

Functions

	create_science_filename(instrument, time, ...)

	Return a compliant filename.

	parse_science_filename(filepath)

	Parses a science filename into its consitutient properties (instrument, mode, test, time, level, version, descriptor).

	warn_deprecated(msg[, stacklevel])

	Raise a HERMESDeprecationWarning.

	warn_user(msg[, stacklevel])

	Raise a HERMESUserWarning.

Classes

	HERMESDeprecationWarning

	A warning class to indicate a deprecated feature.

	HERMESPendingDeprecationWarning

	A warning class to indicate a soon-to-be deprecated feature.

	HERMESUserWarning

	The primary warning class for HERMES.

	HERMESWarning

	The base warning class from which all HERMES warnings should inherit.

hermes_core.util.io Module

Classes

	CDFHandler()

	A concrete implementation of HermesDataIOHandler for handling heliophysics data in CDF format.

hermes_core.util.schema Module

This module provides schema metadata derivations.

	This code is based on that provided by SpacePy see
	licenses/SPACEPY.rst

Classes

	HermesDataSchema()

	Class representing the schema of a file type.

hermes_core.util.util Module

This module provides general utility functions.

Functions

	create_science_filename(instrument, time, ...)

	Return a compliant filename.

	parse_science_filename(filepath)

	Parses a science filename into its consitutient properties (instrument, mode, test, time, level, version, descriptor).

hermes_core.util.validation Module

Functions

	validate(filepath)

	Validate a data file such as a CDF.

Classes

	CDFValidator()

	Validator for CDF files.

print_config

	
hermes_core.print_config()

	Print current configuration options.

HermesData

	
class hermes_core.timedata.HermesData(timeseries: TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries], support: dict [https://docs.python.org/3/library/stdtypes.html#dict][Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity] | NDData [https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData]] | None [https://docs.python.org/3/library/constants.html#None] = None, spectra: NDCollection [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection] | None [https://docs.python.org/3/library/constants.html#None] = None, meta: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A generic object for loading, storing, and manipulating HERMES time series data.

	Parameters:

	
	timeseries (astropy.timeseries.TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries]) – The time series of data. Columns must be Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] arrays.

	support (Optional[dict[Union[astropy.units.Quantity, astropy.nddata.NDData]]]) – Support data arrays which do not vary with time (i.e. Non-Record-Varying data).

	spectra (Optional[ndcube.NDCollection]) – One or more ndcube.NDCube [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube] objects containing spectral or higher-dimensional
timeseries data.

	meta (Optional[dict]) – The metadata describing the time series in an ISTP-compliant format.

Examples

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from ndcube import NDCube, NDCollection
>>> from astropy.wcs import WCS
>>> from astropy.nddata import NDData
>>> from hermes_core.timedata import HermesData
>>> # Create a TimeSeries structure
>>> data = u.Quantity([1, 2, 3, 4], "gauss", dtype=np.uint16)
>>> ts = TimeSeries(time_start="2016-03-22T12:30:31", time_delta=3 * u.s, data={"Bx": data})
>>> # Create a Spectra structure
>>> spectra = NDCollection(
... [
... (
... "test_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Test Spectra Variable"},
... unit="eV",
...),
...)
...]
...)
>>> # Create a Support Structure
>>> support_data = {
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }
>>> # Create Global Metadata Attributes
>>> input_attrs = HermesData.global_attribute_template("eea", "l1", "1.0.0")
>>> # Create HermesData Object
>>> hermes_data = HermesData(timeseries=ts, support=support_data, spectra=spectra, meta=input_attrs)

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the number of columns is less than 2 or the required ‘time’ column is missing.:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any column, excluding ‘time’, is not an astropy.units.Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] object with units.:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the elements of a TimeSeries column are multidimensional:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any supoport data elements are not type astropy.nddata.NDData [https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData]:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If spectra is not an NDCollection object.:

References

	Astropy TimeSeries [https://docs.astropy.org/en/stable/timeseries/index.html/]

	Astropy Quantity and Units [https://docs.astropy.org/en/stable/units/index.html]

	Astropy Time [https://docs.astropy.org/en/stable/time/index.html]

	Astropy NDData [https://docs.astropy.org/en/stable/nddata/]

	Sunpy NDCube and NDCollection [https://docs.sunpy.org/projects/ndcube/en/stable/]

	Space Physics Guidelines for CDF (ISTP) [https://spdf.gsfc.nasa.gov/istp_guide/istp_guide.html]

Attributes Summary

	data

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) A dict [https://docs.python.org/3/library/stdtypes.html#dict] containing each of timeseries and support.

	meta

	(collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]) Global metadata associated with the measurement data.

	spectra

	(ndcube.NDCollection]) A NDCollection object containing high-dimensional spectra data.

	support

	(dict[Union[astropy.units.Quantity, astropy.nddata.NDData]]) A dict [https://docs.python.org/3/library/stdtypes.html#dict] containing one or more non-time-varying support variables.

	time

	(astropy.time.Time [https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time]) The times of the measurements.

	time_range

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) The start and end times of the times.

	timeseries

	(astropy.timeseries.TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries]) A TimeSeries representing one or more measurements as a function of time.

Methods Summary

	add_measurement(measure_name, data[, meta])

	Add a new time-varying scalar measurement (column).

	add_spectra(name, data[, meta])

	Add a new time-varying vector measurement.

	add_support(name, data[, meta])

	Add a new non-time-varying data array.

	append(timeseries)

	Add additional measurements to an existing column.

	global_attribute_template([instr_name, ...])

	Function to generate a template of the required ISTP-compliant global attributes.

	load(file_path)

	Load data from a file.

	measurement_attribute_template()

	Function to generate a template of the required measurement attributes.

	plot([axes, columns, subplots])

	Plot the measurement data.

	remove(measure_name)

	Remove an existing measurement or support data array.

	save([output_path, overwrite])

	Save the data to a HERMES CDF file.

Attributes Documentation

	
data

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) A dict [https://docs.python.org/3/library/stdtypes.html#dict] containing each of timeseries and support.

	
meta

	(collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]) Global metadata associated with the measurement data.

	
spectra

	(ndcube.NDCollection]) A NDCollection object containing high-dimensional spectra data.

	
support

	(dict[Union[astropy.units.Quantity, astropy.nddata.NDData]]) A dict [https://docs.python.org/3/library/stdtypes.html#dict] containing one or more non-time-varying support variables.

	
time

	(astropy.time.Time [https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time]) The times of the measurements.

	
time_range

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) The start and end times of the times.

	
timeseries

	(astropy.timeseries.TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries]) A TimeSeries representing one or more measurements as a function of time.

Methods Documentation

	
add_measurement(measure_name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity], meta: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Add a new time-varying scalar measurement (column).

	Parameters:

	
	measure_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the measurement to add.

	data (astropy.units.Quantity [https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – The data to add. Must have the same time stamps as the existing data.

	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The metadata associated with the measurement.

	Raises:

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If var_data is not of type Quantity.:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If data has more than one dimension:

	
add_spectra(name: str [https://docs.python.org/3/library/stdtypes.html#str], data: NDCube [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube], meta: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Add a new time-varying vector measurement. This include higher-dimensional time-varying
data.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the measurement to add.

	data (ndcube.NDCube [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube]) – The data to add. Must have the same time stamps as the existing data.

	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The metadata associated with the measurement.

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If var_data is not of type NDCube.:

	
add_support(name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Quantity [https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity] | NDData [https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData], meta: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Add a new non-time-varying data array.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the data array to add.

	data (Union[astropy.units.Quantity, astropy.nddata.NDData],) – The data to add.

	meta (Optional[dict], optional) – The metadata associated for the data array.

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If var_data is not of type NDData.:

	
append(timeseries: TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries])

	Add additional measurements to an existing column.

	Parameters:

	timeseries (astropy.timeseries.TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries]) – The data to be appended (rows) as a TimeSeries object.

	
static global_attribute_template(instr_name: str [https://docs.python.org/3/library/stdtypes.html#str] = '', data_level: str [https://docs.python.org/3/library/stdtypes.html#str] = '', version: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Function to generate a template of the required ISTP-compliant global attributes.

	Parameters:

	
	instr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The instrument name. Must be “eea”, “nemisis”, “merit” or “spani”.

	data_level (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data level of the data. Must be “l0”, “l1”, “ql”, “l2”, “l3”, “l4”

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Must be of the form X.Y.Z.

	Returns:

	template (collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]) – A template for required global attributes.

	
classmethod load(file_path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Load data from a file.

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully specificed file path.

	Returns:

	data (HermesData) – A HermesData object containing the loaded data.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the file type is not recognized as a file type that can be loaded.:

	
static measurement_attribute_template() → OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Function to generate a template of the required measurement attributes.

	Returns:

	template (collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]) – A template for required variable attributes that must be provided.

	
plot(axes=None, columns=None, subplots=True, **plot_args)

	Plot the measurement data.

	Parameters:

	
	axes (Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes], optional) – If provided the image will be plotted on the given axes.
Defaults to None [https://docs.python.org/3/library/constants.html#None] and creates a new axis.

	columns (list[str], optional) – If provided, only plot the specified measurements otherwise try to plot them all.

	subplots (bool [https://docs.python.org/3/library/functions.html#bool]) – If set, all columns are plotted in their own plot panel.

	**plot_args (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional plot keyword arguments that are handed to
Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes].

	Returns:

	Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] – The plot axes.

	
remove(measure_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Remove an existing measurement or support data array.

	Parameters:

	measure_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the variable to remove.

	
save(output_path: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Save the data to a HERMES CDF file.

	Parameters:

	
	output_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A string path to the directory where file is to be saved.
If not provided, saves to the current directory.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If set, overwrites existing file of the same name.

	Returns:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to the saved file.

create_science_filename

	
hermes_core.util.create_science_filename(instrument: str [https://docs.python.org/3/library/stdtypes.html#str], time: str [https://docs.python.org/3/library/stdtypes.html#str], level: str [https://docs.python.org/3/library/stdtypes.html#str], version: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = '', descriptor: str [https://docs.python.org/3/library/stdtypes.html#str] = '', test: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Return a compliant filename. The format is defined as

hermes_{inst}_{mode}_{level}{test}_{descriptor}_{time}_v{version}.cdf

This format is only appropriate for data level >= 1.

	Parameters:

	
	instrument (str [https://docs.python.org/3/library/stdtypes.html#str]) – The instrument name. Must be one of the following “eea”, “nemesis”, “merit”, “spani”

	time (str [https://docs.python.org/3/library/stdtypes.html#str] (in isot format) or ~astropy.time) – The time

	level (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data level. Must be one of the following “l0”, “l1”, “l2”, “l3”, “l4”, “ql”

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file version which must be given as X.Y.Z

	descriptor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional file descriptor.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional instrument mode.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects whether the file is a test file.

	Returns:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – A CDF file name including the given parameters that matches the HERMES file naming conventions

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the instrument is not recognized as one of the HERMES instruments:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data level is not recognized as one of the HERMES valid data levels:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data version does not match the HERMES data version formatting conventions:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data product descriptor or instrument mode do not match the HERMES formatting conventions:

parse_science_filename

	
hermes_core.util.parse_science_filename(filepath: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parses a science filename into its consitutient properties (instrument, mode, test, time, level, version, descriptor).

	Parameters:

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fully specificied filepath of an input file

	Returns:

	result (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary with each property.

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the file’s mission name is not “HERMES”:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the file’s instreument name is not one of the HERMES instruments:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data level >0 for packet files:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If not a CDF File:

warn_deprecated

	
hermes_core.util.warn_deprecated(msg, stacklevel=1)

	Raise a HERMESDeprecationWarning.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Warning message.

	stacklevel (int [https://docs.python.org/3/library/functions.html#int]) – This is interpreted relative to the call to this function,
e.g. stacklevel=1 (the default) sets the stack level in the
code that calls this function.

warn_user

	
hermes_core.util.warn_user(msg, stacklevel=1)

	Raise a HERMESUserWarning.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Warning message.

	stacklevel (int [https://docs.python.org/3/library/functions.html#int]) – This is interpreted relative to the call to this function,
e.g. stacklevel=1 (the default) sets the stack level in the
code that calls this function.

HERMESDeprecationWarning

	
exception hermes_core.util.HERMESDeprecationWarning

	A warning class to indicate a deprecated feature.

HERMESPendingDeprecationWarning

	
exception hermes_core.util.HERMESPendingDeprecationWarning

	A warning class to indicate a soon-to-be deprecated feature.

HERMESUserWarning

	
exception hermes_core.util.HERMESUserWarning

	The primary warning class for HERMES.

Use this if you do not need a specific type of warning.

HERMESWarning

	
exception hermes_core.util.HERMESWarning

	The base warning class from which all HERMES warnings should inherit.

Any warning inheriting from this class is handled by the HERMES
logger. This warning should not be issued in normal code. Use
“HERMESUserWarning” instead or a specific sub-class.

CDFHandler

	
class hermes_core.util.io.CDFHandler

	Bases: HermesDataIOHandler

A concrete implementation of HermesDataIOHandler for handling heliophysics data in CDF format.

This class provides methods to load and save heliophysics data from/to a CDF file.

Methods Summary

	load_data(file_path)

	Load heliophysics data from a CDF file.

	save_data(data, file_path)

	Save heliophysics data to a CDF file.

Methods Documentation

	
load_data(file_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][TimeSeries [https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Load heliophysics data from a CDF file.

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the CDF file.

	Returns:

	
	data (TimeSeries) – An instance of TimeSeries containing the loaded data.

	support (dict[astropy.nddata.NDData]) – Non-record-varying data contained in the file

	spectra (ndcube.NDCollection [https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection]) – Spectral or High-dimensional measurements in the loaded data.

	
save_data(data, file_path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Save heliophysics data to a CDF file.

	Parameters:

	
	data (hermes_core.timedata.HermesData) – An instance of HermesData containing the data to be saved.

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to save the CDF file.

	Returns:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to the saved file.

HermesDataSchema

	
class hermes_core.util.schema.HermesDataSchema

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class representing the schema of a file type.

Attributes Summary

	default_global_attributes

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) Default Global Attributes applied for all HERMES Data Files

	global_attribute_schema

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) Schema for variable attributes of the file.

	variable_attribute_schema

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) Schema for variable attributes of the file.

Methods Summary

	derive_global_attributes(data)

	Function to derive global attributes for the given measurement data.

	derive_measurement_attributes(data, var_name)

	Function to derive metadata for the given measurement.

	derive_time_attributes(data)

	Function to derive metadata for the time measurement.

	global_attribute_info([attribute_name])

	Function to generate a astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table] of information about each global metadata attribute.

	global_attribute_template()

	Function to generate a template of required global attributes that must be set for a valid CDF.

	measurement_attribute_info([attribute_name])

	Function to generate a astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table] of information about each variable metadata attribute.

	measurement_attribute_template()

	Function to generate a template of required measurement attributes that must be set for a valid CDF measurement variable.

Attributes Documentation

	
default_global_attributes

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) Default Global Attributes applied for all HERMES Data Files

	
global_attribute_schema

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) Schema for variable attributes of the file.

	
variable_attribute_schema

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) Schema for variable attributes of the file.

Methods Documentation

	
derive_global_attributes(data) → OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Function to derive global attributes for the given measurement data.

	Parameters:

	data (hermes_core.timedata.HermesData) – An instance of HermesData to derive metadata from.

	Returns:

	attributes (OrderedDict) – A dict containing key: value pairs of global metadata attributes.

	
derive_measurement_attributes(data, var_name: str [https://docs.python.org/3/library/stdtypes.html#str], guess_types: list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]] | None [https://docs.python.org/3/library/constants.html#None] = None) → OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Function to derive metadata for the given measurement.

	Parameters:

	
	data (hermes_core.timedata.HermesData) – An instance of HermesData to derive metadata from

	var_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the measurement to derive metadata for

	guess_types (list[int], optional) – Guessed CDF Type of the variable

	Returns:

	attributes (OrderedDict) – A dict containing key: value pairs of derived metadata attributes.

	
derive_time_attributes(data) → OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Function to derive metadata for the time measurement.

	Parameters:

	data (hermes_core.timedata.HermesData) – An instance of HermesData to derive metadata from.

	Returns:

	attributes (OrderedDict) – A dict containing key: value pairs of time metadata attributes.

	
static global_attribute_info(attribute_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table]

	Function to generate a astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table] of information about each global
metadata attribute. The astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table] contains all information in the HERMES
global attribute schema including:

	description: (str [https://docs.python.org/3/library/stdtypes.html#str]) A brief description of the attribute

	default: (str [https://docs.python.org/3/library/stdtypes.html#str]) The default value used if none is provided

	
	derived: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attibute can be derived by the HERMES
	HermesDataSchema class

	required: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attribute is required by HERMES standards

	
	validate: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attribute is included in the
	validate() checks (Note, not all attributes that
are required are validated)

	
	overwrite: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the HermesDataSchema
	attribute derivations will overwrite an existing attribute value with an updated
attribute value from the derivation process.

	Parameters:

	attribute_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional, default None) – The name of the attribute to get specific information for.

	Returns:

	info (astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table]) – A table of information about global metadata.

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If attribute_name is not a recognized global attribute.:

	
static global_attribute_template() → OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Function to generate a template of required global attributes
that must be set for a valid CDF.

	Returns:

	template (OrderedDict) – A template for required global attributes that must be provided.

	
static measurement_attribute_info(attribute_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table]

	Function to generate a astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table] of information about each variable
metadata attribute. The astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table] contains all information in the HERMES
variable attribute schema including:

	description: (str [https://docs.python.org/3/library/stdtypes.html#str]) A brief description of the attribute

	
	derived: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attibute can be derived by the HERMES
	HermesDataSchema class

	required: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attribute is required by HERMES standards

	
	overwrite: (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the HermesDataSchema
	attribute derivations will overwrite an existing attribute value with an updated
attribute value from the derivation process.

	
	valid_values: (str [https://docs.python.org/3/library/stdtypes.html#str]) List of allowed values the attribute can take for HERMES products,
	if applicable

	
	alternate: (str [https://docs.python.org/3/library/stdtypes.html#str]) An additional attribute name that can be treated as an alternative
	of the given attribute. Not all attributes have an alternative and only one of a given
attribute or its alternate are required.

	
	var_types: (str [https://docs.python.org/3/library/stdtypes.html#str]) A list of the variable types that require the given
	attribute to be present.

	Parameters:

	attribute_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional, default None) – The name of the attribute to get specific information for.

	Returns:

	info (astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table]) – A table of information about variable metadata.

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If attribute_name is not a recognized global attribute.:

	
static measurement_attribute_template() → OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Function to generate a template of required measurement attributes
that must be set for a valid CDF measurement variable.

	Returns:

	template (OrderedDict) – A template for required variable attributes that must be provided.

create_science_filename

	
hermes_core.util.util.create_science_filename(instrument: str [https://docs.python.org/3/library/stdtypes.html#str], time: str [https://docs.python.org/3/library/stdtypes.html#str], level: str [https://docs.python.org/3/library/stdtypes.html#str], version: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = '', descriptor: str [https://docs.python.org/3/library/stdtypes.html#str] = '', test: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Return a compliant filename. The format is defined as

hermes_{inst}_{mode}_{level}{test}_{descriptor}_{time}_v{version}.cdf

This format is only appropriate for data level >= 1.

	Parameters:

	
	instrument (str [https://docs.python.org/3/library/stdtypes.html#str]) – The instrument name. Must be one of the following “eea”, “nemesis”, “merit”, “spani”

	time (str [https://docs.python.org/3/library/stdtypes.html#str] (in isot format) or ~astropy.time) – The time

	level (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data level. Must be one of the following “l0”, “l1”, “l2”, “l3”, “l4”, “ql”

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file version which must be given as X.Y.Z

	descriptor (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional file descriptor.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional instrument mode.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects whether the file is a test file.

	Returns:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – A CDF file name including the given parameters that matches the HERMES file naming conventions

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the instrument is not recognized as one of the HERMES instruments:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data level is not recognized as one of the HERMES valid data levels:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data version does not match the HERMES data version formatting conventions:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data product descriptor or instrument mode do not match the HERMES formatting conventions:

parse_science_filename

	
hermes_core.util.util.parse_science_filename(filepath: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parses a science filename into its consitutient properties (instrument, mode, test, time, level, version, descriptor).

	Parameters:

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fully specificied filepath of an input file

	Returns:

	result (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary with each property.

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the file’s mission name is not “HERMES”:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the file’s instreument name is not one of the HERMES instruments:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data level >0 for packet files:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If not a CDF File:

validate

	
hermes_core.util.validation.validate(filepath: str [https://docs.python.org/3/library/stdtypes.html#str]) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Validate a data file such as a CDF.

	Parameters:

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – A fully specificed file path.

	Returns:

	errors (list[str]) – A list of validation errors returned. A valid file will result in an emppty list being returned.

CDFValidator

	
class hermes_core.util.validation.CDFValidator

	Bases: HermesDataValidator

Validator for CDF files.

Methods Summary

	validate(file_path)

	Validate the CDF file.

Methods Documentation

	
validate(file_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Validate the CDF file.

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the CDF file.

	Returns:

	errors (list[str]) – A list of validation errors returned. A valid file will result in an emppty list being returned.

Examples

	Creating a CDF File

Creating a CDF File

This module provides an example for creating a CDF File using the HermesData
class. This class is an abstraction of underlying data structures to make the handling of
measurement data easier when reading and writing CDF data.

>>> from collections import OrderedDict
>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from astropy.nddata import NDData
>>> from astropy.wcs import WCS
>>> from ndcube import NDCube, NDCollection
>>> import tempfile
>>>
>>> # Import the `hermes_core` Package
>>> from hermes_core.timedata import HermesData
>>> from hermes_core.util.validation import validate
>>>
>>> # Create a np.ndarray of example measurement data
>>> bx = np.random.choice(a=[-1, 0, 1], size=1000).cumsum(0)
>>> by = np.random.choice(a=[-1, 0, 1], size=1000).cumsum(0)
>>>
>>> # Create a TimeSeries with the example measurement and a Time column
>>> ts = TimeSeries(
... time_start="2016-03-22T12:30:31",
... time_delta=3 * u.s,
... data={"Bx GSE": u.Quantity(value=bx, unit="nanoTesla", dtype=np.int16)},
...)
>>>
>>> # You can also add new measurements to the TimeSeries directly
>>> ts.add_column(col=u.Quantity(value=by, unit="nanoTesla", dtype=np.int16),
... name="By GSE"
...)
>>>
>>> # Create support data or non-time-varying (time invariant) data
>>> support_data = {
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }
>>>
>>> # Create high-dimensional data leveraging the API of NDCube
>>> spectra = NDCollection(
... [
... (
... "example_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...),
...)
...]
...)
>>>
>>> # To make the creation of global metadata easier you can use the static
>>> # `HermesData.global_attribute_template()` function.
>>> global_attrs_template = HermesData.global_attribute_template()
>>>
>>> global_attrs_template["DOI"] = "https://doi.org/<PREFIX>/<SUFFIX>"
>>> global_attrs_template["Data_level"] = "L1>Level 2"
>>> global_attrs_template["Data_version"] = "0.0.1"
>>> global_attrs_template[
... "Descriptor"
...] = "nemisis>Noise Eliminating Magnetometer Instrument in a Small Integrated System"
>>> global_attrs_template["Instrument_mode"] = "default"
>>> global_attrs_template["Instrument_type"] = "Magnetic Fields (space)"
>>> global_attrs_template["Data_product_descriptor"] = "odpd"
>>>
>>> global_attrs_template["HTTP_LINK"] = [
... "https://science.nasa.gov/missions/hermes",
... "https://github.com/HERMES-SOC",
... "https://github.com/HERMES-SOC/hermes_nemisis",
...]
>>> global_attrs_template["LINK_TEXT"] = ["HERMES homepage",
... "HERMES SOC Github", "NEMISIS Analysis Tools"]
>>> global_attrs_template["LINK_TITLE"] = ["HERMES homepage",
... "HERMES SOC Github", "NEMISIS Analysis Tools"]
>>>
>>> global_attrs_template["MODS"] = ["v0.0.1 - Original version."]
>>> global_attrs_template["PI_affiliation"] = "NASA Goddard Space Flight Center"
>>> global_attrs_template["PI_name"] = "Dr. Eftyhia Zesta"
>>> global_attrs_template["TEXT"] = "Sample HERMES NEMISIS CDF File"
>>>
>>> example_data = HermesData(
... timeseries=ts,
... support=support_data,
... spectra=spectra,
... meta=global_attrs_template
...)
>>>
>>> # To make the creation of variable metadata easier you can use the static
>>> # `HermesData.measurement_attribute_template()` function.
>>> template = HermesData.measurement_attribute_template()
>>>
>>> # Update the Metadata for each of the Measurements
>>> example_data.timeseries["Bx GSE"].meta.update(
... OrderedDict({"CATDESC": "X component of magnetic Field GSE"}))
>>> example_data.timeseries["By GSE"].meta.update(
... OrderedDict({"CATDESC": "Y component of magnetic Field GSE"}))
>>>
>>> # You can add new scalar time-variant measurements to the HermesData container
>>> bz = np.random.choice(a=[-1, 0, 1], size=1000).cumsum(0)
>>> example_data.add_measurement(
... measure_name="Bz GSE",
... data=u.Quantity(value=bz, unit="nanoTesla", dtype=np.int16),
... meta={
... "VAR_TYPE": "data",
... "CATDESC": "Z component of magnetic Field GSE",
... },
...)
>>>
>>> # You can add new time-invariant data to the HermesData container
>>> example_data.add_support(
... name="calibration_const",
... data=NDData(data=[1e-1]),
... meta={
... "CATDESC": "Calibration Factor",
... "VAR_TYPE": "metadata"
... },
...)
>>>
>>> # You can ass new spectral or high-dimensional data to the HermesData container
>>> data = NDCube(
... data=np.random.random(size=(1000, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...)
>>> example_data.add_spectra(
... name="added_spectra",
... data=data,
... meta={"VAR_TYPE": "data"},
...)
>>>
>>> # create the CDF File
>>> DRYRUN=True
>>> if DRYRUN:
... with tempfile.TemporaryDirectory() as tmpdirname:
... cdf_file_path = example_data.save(output_path=tmpdirname)
... else:
... cdf_file_path = example_data.save(output_path="./", overwrite=True)

The file that this code generates is made available as a sample file in this
repository in hermes_core/data/sample/hermes_nms_default_l1_20160322T123031_v0.0.1.cdf.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hermes_core	

 	
 	
 hermes_core.timedata	

 	
 	
 hermes_core.util	

 	
 	
 hermes_core.util.io	

 	
 	
 hermes_core.util.schema	

 	
 	
 hermes_core.util.util	

 	
 	
 hermes_core.util.validation	

Index

 A
 | C
 | D
 | G
 | H
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add_measurement() (hermes_core.timedata.HermesData method)

 	add_spectra() (hermes_core.timedata.HermesData method)

 	
 	add_support() (hermes_core.timedata.HermesData method)

 	append() (hermes_core.timedata.HermesData method)

C

 	
 	CDFHandler (class in hermes_core.util.io)

 	CDFValidator (class in hermes_core.util.validation)

 	
 	create_science_filename() (in module hermes_core.util)

 	(in module hermes_core.util.util)

D

 	
 	data (hermes_core.timedata.HermesData attribute)

 	default_global_attributes (hermes_core.util.schema.HermesDataSchema attribute)

 	
 	derive_global_attributes() (hermes_core.util.schema.HermesDataSchema method)

 	derive_measurement_attributes() (hermes_core.util.schema.HermesDataSchema method)

 	derive_time_attributes() (hermes_core.util.schema.HermesDataSchema method)

G

 	
 	global_attribute_info() (hermes_core.util.schema.HermesDataSchema static method)

 	global_attribute_schema (hermes_core.util.schema.HermesDataSchema attribute)

 	
 	global_attribute_template() (hermes_core.timedata.HermesData static method)

 	(hermes_core.util.schema.HermesDataSchema static method)

H

 	
 	
 hermes_core

 	module

 	
 hermes_core.timedata

 	module

 	
 hermes_core.util

 	module

 	
 hermes_core.util.io

 	module

 	
 hermes_core.util.schema

 	module

 	
 	
 hermes_core.util.util

 	module

 	
 hermes_core.util.validation

 	module

 	HermesData (class in hermes_core.timedata)

 	HermesDataSchema (class in hermes_core.util.schema)

 	HERMESDeprecationWarning

 	HERMESPendingDeprecationWarning

 	HERMESUserWarning

 	HERMESWarning

L

 	
 	load() (hermes_core.timedata.HermesData class method)

 	
 	load_data() (hermes_core.util.io.CDFHandler method)

M

 	
 	measurement_attribute_info() (hermes_core.util.schema.HermesDataSchema static method)

 	measurement_attribute_template() (hermes_core.timedata.HermesData static method)

 	(hermes_core.util.schema.HermesDataSchema static method)

 	meta (hermes_core.timedata.HermesData attribute)

 	
 module

 	hermes_core

 	hermes_core.timedata

 	hermes_core.util

 	hermes_core.util.io

 	hermes_core.util.schema

 	hermes_core.util.util

 	hermes_core.util.validation

P

 	
 	parse_science_filename() (in module hermes_core.util)

 	(in module hermes_core.util.util)

 	
 	plot() (hermes_core.timedata.HermesData method)

 	print_config() (in module hermes_core)

R

 	
 	remove() (hermes_core.timedata.HermesData method)

S

 	
 	save() (hermes_core.timedata.HermesData method)

 	save_data() (hermes_core.util.io.CDFHandler method)

 	
 	spectra (hermes_core.timedata.HermesData attribute)

 	support (hermes_core.timedata.HermesData attribute)

T

 	
 	time (hermes_core.timedata.HermesData attribute)

 	
 	time_range (hermes_core.timedata.HermesData attribute)

 	timeseries (hermes_core.timedata.HermesData attribute)

V

 	
 	validate() (hermes_core.util.validation.CDFValidator method)

 	(in module hermes_core.util.validation)

 	
 	variable_attribute_schema (hermes_core.util.schema.HermesDataSchema attribute)

W

 	
 	warn_deprecated() (in module hermes_core.util)

 	
 	warn_user() (in module hermes_core.util)

 _static/hermes_logo.png

_static/minus.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 HERMES Core Documentation

 		
 Release History

 		
 Full Changelog

 		
 Latest

 		
 0.2.0 (2023-03-22)

 		
 0.1.0 (2022-10-05)

 		
 Calibration and Measurement Algorithm Document (CMAD)

 		
 User’s Guide

 		
 Brief Tour

 		
 Opening and Writing HERMES Data

 		
 Overview

 		
 Creating a HermesData object

 		
 Creating a HermesData from an existing CDF File

 		
 Adding data to a HermesData Container

 		
 Adding metadata attributes

 		
 Visualizing data in a HermesData Container

 		
 Writing a CDF File

 		
 Validating a CDF File

 		
 HERMES CDF Format Guide

 		
 1. Introduction

 		
 2. HERMES Science Investigations

 		
 3. Conventions

 		
 4. Global Attributes

 		
 5. Variables

 		
 Customization and Global Configuration

 		
 The configrc file

 		
 Using your own configrc file

 		
 Dynamic settings

 		
 Logging system

 		
 Overview

 		
 Configuring the logging system

 		
 Context managers

 		
 Developer’s Guide

 		
 Developer Environment

 		
 Visual Studio Code

 		
 Coding Standards

 		
 Language Standard

 		
 Coding Style/Conventions

 		
 Private code

 		
 Utilities

 		
 Formatting

 		
 Documentation and Testing

 		
 Data and Configuration

 		
 Standard output, warnings, and errors

 		
 Including C Code

 		
 Testing Guidelines

 		
 Writing tests

 		
 Documentation Rules

 		
 Overview

 		
 Sphinx

 		
 Workflow for Maintainers

 		
 Integrating changes via the web interface (recommended)

 		
 IOssue Milestones and Labels

 		
 Updating and Maintaining the Changelog

 		
 Releases

 		
 Global Settings

 		
 API Reference

 		
 hermes_core Package

 		
 Functions

 		
 hermes_core.timedata Module

 		
 Classes

 		
 hermes_core.util Package

 		
 Functions

 		
 Classes

 		
 hermes_core.util.io Module

 		
 Classes

 		
 hermes_core.util.schema Module

 		
 Classes

 		
 hermes_core.util.util Module

 		
 Functions

 		
 hermes_core.util.validation Module

 		
 Functions

 		
 Classes

 		
 Examples

 		
 Creating a CDF File

_images/reading_writing_data-1.png
IIS>Noise Eliminating Magnetometer Instrument in a Small Integrated Syst

By [nT]

&

B2[nT]

1240 1300 1320
Time (utc) 2127-May.07

