
hermes_core

HERMES SOC Team

Mar 26, 2024

CONTENTS

1 Release History 3
1.1 Full Changelog . 3

2 Calibration and Measurement Algorithm Document (CMAD) 5

3 User’s Guide 7
3.1 A Brief Tour . 7
3.2 Opening and Writing HERMES Data . 7
3.3 HERMES CDF Format Guide . 17
3.4 Customization and Global Configuration . 40
3.5 Logging system . 42

4 Developer’s Guide 45
4.1 Developer Environment . 45
4.2 Coding Standards . 46
4.3 Testing Guidelines . 49
4.4 Documentation Rules . 50
4.5 Workflow for Maintainers . 52
4.6 Global Settings . 54

5 API Reference 55
5.1 hermes_core Package . 55
5.2 hermes_core.timedata Module . 55
5.3 hermes_core.util Package . 61
5.4 hermes_core.util.io Module . 63
5.5 hermes_core.util.schema Module . 64
5.6 hermes_core.util.util Module . 68
5.7 hermes_core.util.validation Module . 69

6 Examples 71
6.1 Creating a CDF File . 71

Python Module Index 75

Index 77

i

ii

hermes_core

This is the documentation for the hermes_core Python Package.

CONTENTS 1

hermes_core

2 CONTENTS

CHAPTER

ONE

RELEASE HISTORY

1.1 Full Changelog

This project uses semantic versioning.

1.1.1 Latest

• Added data class to hold measurements and to save to CDF files

1.1.2 0.2.0 (2023-03-22)

This release includes improvements tested in the second dataflow test. Since the last release, the improvements are as
follows:

• Uses fstrings instead of the format syntax

• Adds a log message on import to show the version number of the package

• Documentation content and styling improvements

• Switches from using setup.py to pyproject.toml for package

• Bug fixes for supporting pathlib’s Path objects, and a permissions bug to the devcontainer

• Using f-strings and log on import by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/28

• Added latest versions of python to testing by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/
29

• Add to the Documentation the location for where config files should be store (dynamically) by @dbarrous in
https://github.com/HERMES-SOC/hermes_core/pull/35

• Fix devcontainer config to use new vscode user by @dbarrous in https://github.com/HERMES-SOC/hermes_
core/pull/32

• Update to docs, added logo, updated theme colors and favicon by @ehsteve in https://github.com/
HERMES-SOC/hermes_core/pull/37

• Fix to version number and move to pyproject.toml usage by @ehsteve in https://github.com/HERMES-SOC/
hermes_core/pull/40

• Bug fix by @ehsteve in https://github.com/HERMES-SOC/hermes_core/pull/41

3

https://semver.org
https://docs.python.org/3/library/pathlib.html#module-pathlib
https://github.com/HERMES-SOC/hermes_core/pull/28
https://github.com/HERMES-SOC/hermes_core/pull/29
https://github.com/HERMES-SOC/hermes_core/pull/29
https://github.com/HERMES-SOC/hermes_core/pull/35
https://github.com/HERMES-SOC/hermes_core/pull/32
https://github.com/HERMES-SOC/hermes_core/pull/32
https://github.com/HERMES-SOC/hermes_core/pull/37
https://github.com/HERMES-SOC/hermes_core/pull/37
https://github.com/HERMES-SOC/hermes_core/pull/40
https://github.com/HERMES-SOC/hermes_core/pull/40
https://github.com/HERMES-SOC/hermes_core/pull/41

hermes_core

1.1.3 0.1.0 (2022-10-05)

This version release was tested in the first HERMES Ground System data flow test.

• First draft of python packaging including sphinx documentation based on the sunpy package template

• First draft of the documentation including coding standards for the HERMES ecosystem

• Automated testing and coverage using GitHub actions

• Logging support

• Configuration support

• Utilities parsing compliant filenames for level 0 binary files and creating and parsing higher level filenames

4 Chapter 1. Release History

CHAPTER

TWO

CALIBRATION AND MEASUREMENT ALGORITHM DOCUMENT
(CMAD)

HERMES consists of multiple instruments, each of which hosts its Calibration and Measurement Algortihm Document.
See the documentation for each instrument.

5

hermes_core

6 Chapter 2. Calibration and Measurement Algorithm Document (CMAD)

CHAPTER

THREE

USER’S GUIDE

Welcome to our User guide. For more details checkout the API Reference.

3.1 A Brief Tour

Insert a tour here.

3.2 Opening and Writing HERMES Data

3.2.1 Overview

The HermesData class provides a convenient and efficient way to work with HERMES science CDF data files. The
point of this class is to simplify data management, enhances data discovery, and facilitates adherence to CDF standards.

CDF (Common Data Format) files are a binary file format commonly used by NASA scientific research to store and
exchange data. They provide a flexible structure for organizing and representing multidimensional datasets along with
associated metadata. CDF files are widely used in space physics. Because of their versatility, CDF files can be complex.
CDF standards exist to make it easier to work with these files. International Solar-Terrestrial Physics (ISTP) compliance
is a set of standards defined by the Space Physics Data Facility (SPDF). ISTP compliance ensures that the data adheres
to specific formatting requirements, quality control measures, and documentation standards. Uploading CDF files to the
NASA SPDF archive requires conforming to the ISTP guidelines. In addition, HERMES maintains it’s own standards
in the CDF guide.

The CDF C library must be properly installed in order to use this package to save and load CDF files. The CDF library
can be downloaded from the SPDF CDF Page to use the CDF libraries in your local environment. Alternatively, the
CDF library is installed and available through the HERMES development Docker container environment. For more
information on the HERMES Docker container please see our Development Environment Page.

To make it easier to work with HERMES data, the HermesData class facilitates the abstraction of HERMES CDF
files. It allows users to read and write HERMES data and is compliant with PyHC expectations. The data is stored in
a TimeSeries table while the metadata is stored in dictionaries. TimeSeries is a Python class for handling scientific
time series data that provides a convenient and familiar interface for working with tabular data. By loading the contents
of a CDF file into a TimeSeries table, it becomes easier to manipulate, analyze, and visualize the data. Additionally,
metadata attributes can be associated with the table, allowing for enhanced documentation and data discovery. The
HermesData class aims to provide a simplified interface to reading and writing HERMES data and metadata to CDF
files while automatically handling the complexities of the underlying CDF file format.

7

https://cdf.gsfc.nasa.gov
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#VAR_TYPE
https://spdf.gsfc.nasa.gov
https://cdf.gsfc.nasa.gov/
https://heliopython.org
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries

hermes_core

3.2.2 Creating a HermesData object

Creating a HermesData data container from scratch involves four pieces of data:

• timeseries (required) - an TimeSeries containing the time dimension of
the data as well as at least one other measurement. This data structure must be used for all scalar time-
varying measurement data.

• spectra (optional) - an NDCollection containing one or more NDCube objects
representing higher-dimensional measurements and spectral data. This data must should be used for all
vector or tensor-based measurement data.

• support (optional) - a dict[astropy.nddata.NDdata | astropy.units.Quantity] containing one
or more non-time-varying (time invariant) measurements, time-invariant support or metadata variables.

• meta (optional) - a dict containing global metadata information about the CDF. This data
structure must be used for all global metadata required for ISTP compliance.

Alternatively, a HermesData data container can be loaded from an existing CDF file using the load() function.

Creating a TimeSeries for HermesData timeseries

A HermesData must be initialized by providing a TimeSeries object with at least one measurement. There are many
ways to initialize one but here is one example:

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> ts = TimeSeries(
... time_start='2016-03-22T12:30:31',
... time_delta=3 * u.s,
... data={'Bx': u.Quantity(
... value=[1, 2, 3, 4],
... unit='nanoTesla',
... dtype=np.uint16
...)}
...)

Be mindful to set the right number of bits per measurement, in this case 16 bits. If you do not, it will likely default to
float64 and if you write a CDF file, it will be larger than expected or needed. The valid dtype choices are uint8, uint16,
uint32, uint64, int8, int16, int32, int64, float16, float32, float64, float164. You can also create your time array directly

>>> from astropy.time import Time, TimeDelta
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> times = Time('2010-01-01 00:00:00', scale='utc') + TimeDelta(np.arange(100) * u.s)
>>> ts = TimeSeries(
... time=times,
... data={'diff_e_flux': u.Quantity(
... value=np.arange(100) * 1e-3,
... unit='1/(cm**2 * s * eV * steradian)',
... dtype=np.float32
...)}
...)

8 Chapter 3. User’s Guide

https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

hermes_core

Note the use of time and astropy.units which provide several advantages over using arrays of numbers and are
required by HermesData.

Creating a NDCollection for HermesData spectra

The HermesData object leverages API functionality of the ndcube package to enable easier analysis of higher-
dimensional and spectral data measurements. The main advantage that this package provides in in it’s handling of
coordinate transformations and slicing in real-world-coordinates compared to using index-based slicing for higher-
dimensional data. For more information about the ndcube package and its API functionality please read the SunPy
NDCube documentation.

You can create a NDCollection object using an approach similar to the following example:

>>> import numpy as np
>>> from astropy.wcs import WCS
>>> from ndcube import NDCube, NDCollection
>>> spectra = NDCollection(
... [
... (
... "example_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...),
...)
...]
...)

The NDCollection is created using a list of tuple containing named (str, NDCube) pairs. Each NDCube contains
the required data array, a WCS object responsible for the coordinate transformations, optional metadata attributes as a
dict, and an units unit that is used to treat the data array as an Quantity.

Creating a dict for HermesData support

The HermesData object also accepts additional arbitrary data arrays, so-called non-record-varying (NRV) data, which
is frequently support data. These data are required to be a dict of NDData or Quantity objects which are data
containers for physical data. The HermesData class supports both Quantity and NDData objects since one may have
advantages for the type of data being represented: Quantity objects in this support dictmay be more advantageous for
scalar or 1D-vector data while NDData objects in this support dict may be more advantageous for higher-dimensional
vector data. A guide to the nddata package is available in the astropy documentation.

>>> from astropy.nddata import NDData
>>> support_data = {
... "const_param": u.Quantity(value=[1e-3], unit="keV", dtype=np.uint16),
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }

Metadata passed in through the NDData object is used by HermesData as variable metadata attributes required for
ISTP compliance.

3.2. Opening and Writing HERMES Data 9

https://docs.astropy.org/en/stable/time/ref_api.html#module-astropy.time
https://docs.astropy.org/en/stable/units/ref_api.html#module-astropy.units
https://docs.sunpy.org/projects/ndcube/en/stable/reference/ndcube.html#module-ndcube
https://docs.sunpy.org/projects/ndcube/en/stable/reference/ndcube.html#module-ndcube
https://docs.sunpy.org/projects/ndcube/en/stable/
https://docs.sunpy.org/projects/ndcube/en/stable/
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube
https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/units/ref_api.html#module-astropy.units
https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData
https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/nddata/ref_api.html#module-astropy.nddata
https://docs.astropy.org/en/stable/nddata/
https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData

hermes_core

Creating a dict for HermesData meta

You must create a dict or OrderedDict containing the required CDF global metadata. The class function
global_attribute_template() will provide you an empty version that you can fill in. Here is an example with
filled in values.

>>> input_attrs = {
... "DOI": "https://doi.org/<PREFIX>/<SUFFIX>",
... "Data_level": "L1>Level 1", # NOT AN ISTP ATTR
... "Data_version": "0.0.1",
... "Descriptor": "EEA>Electron Electrostatic Analyzer",
... "Data_product_descriptor": "odpd",
... "HTTP_LINK": [
... "https://spdf.gsfc.nasa.gov/istp_guide/istp_guide.html",
... "https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html",
... "https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html"
...],
... "Instrument_mode": "default", # NOT AN ISTP ATTR
... "Instrument_type": "Electric Fields (space)",
... "LINK_TEXT": [
... "ISTP Guide",
... "Global Attrs",
... "Variable Attrs"
...],
... "LINK_TITLE": [
... "ISTP Guide",
... "Global Attrs",
... "Variable Attrs"
...],
... "MODS": [
... "v0.0.0 - Original version.",
... "v1.0.0 - Include trajectory vectors and optics state.",
... "v1.1.0 - Update metadata: counts -> flux.",
... "v1.2.0 - Added flux error.",
... "v1.3.0 - Trajectory vector errors are now deltas."
...],
... "PI_affiliation": "HERMES",
... "PI_name": "HERMES SOC",
... "TEXT": "Valid Test Case",
... }

Here is an example using the global_attribute_template() function to create a minimal subset of global metadata
attributes:

>>> from hermes_core.timedata import HermesData
>>> input_attrs = HermesData.global_attribute_template("eea", "l1", "1.0.0")

10 Chapter 3. User’s Guide

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict

hermes_core

Using Defined Elements to create a HermesData Data Container

Putting it all together here is instantiation of a HermesData object:

>>> from hermes_core.timedata import HermesData
>>> hermes_data = HermesData(
... timeseries=ts,
... support=support_data,
... spectra=spectra,
... meta=input_attrs
...)

For a complete example with instantiation of all objects in one code example:

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from ndcube import NDCube, NDCollection
>>> from astropy.nddata import NDData
>>> from hermes_core.timedata import HermesData
>>> # Create a TimeSeries structure
>>> data = u.Quantity([1, 2, 3, 4], "gauss", dtype=np.uint16)
>>> ts = TimeSeries(time_start="2016-03-22T12:30:31", time_delta=3 * u.s, data={"Bx":␣
→˓data})
>>> # Create a Spectra structure
>>> spectra = NDCollection(
... [
... (
... "example_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...),
...)
...]
...)
>>> # Create a Support Structure
>>> support_data = {
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }
>>> # Create Global Metadata Attributes
>>> input_attrs = HermesData.global_attribute_template("eea", "l1", "1.0.0")
>>> # Create HermesData Object
>>> hermes_data = HermesData(
... timeseries=ts,
... support=support_data,
... spectra=spectra,
... meta=input_attrs
...)

The HermesData is mutable so you can edit it, add another measurement column or edit the metadata after the fact.
Your variable metadata can be found by querying the measurement column directly.

3.2. Opening and Writing HERMES Data 11

hermes_core

>>> hermes_data.timeseries['Bx'].meta.update(
... {"CATDESC": "X component of the Magnetic field measured by HERMES"}
...)
>>> hermes_data.timeseries['Bx'].meta

The class does its best to fill in metadata fields if it can and leaves others blank that it cannot. Those should be filled
in manually. Be careful when editing metadata that was automatically generated as you might make the resulting CDF
file non-compliant.

3.2.3 Creating a HermesData from an existing CDF File

Given a current CDF File you can load it into a HermesData by providing a path to the CDF file:

>>> from hermes_core.timedata import HermesData
>>> hermes_data = HermesData.load("hermes_eea_default_ql_20240406T120621_v0.0.1.cdf")

The HermesData can the be updated, measurements added, metadata added, and written to a new CDF file.

3.2.4 Adding data to a HermesData Container

A new set of measurements or support data can be added to an existing instance. Remember that new measurements
must have the same time stamps as the existing ones and therefore the same number of entries. Support data can be
added as needed. You can add the new measurements in one of two ways.

The more explicit approach is to use add_measurement() function:

>>> data = u.Quantity(np.arange(len(hermes_data.timeseries['Bx'])), 'Gauss', dtype=np.
→˓uint16)
>>> hermes_data.add_measurement(measure_name="By", data=data, meta={"CATDESC": "Test␣
→˓Metadata"})

To add non-time-varying support data use the add_support() function:

>>> hermes_data.add_support(
... name="Calibration_const",
... data=u.Quantity(value=[1e-1], unit="keV", dtype=np.uint16),
... meta={"CATDESC": "Calibration Factor", "VAR_TYPE": "support_data"},
...)
>>> hermes_data.add_support(
... name="Data Mask",
... data=NDData(data=np.eye(5, 5, dtype=np.uint16)),
... meta={"CATDESC": "Diagonal Data Mask", "VAR_TYPE": "support_data"},
...)

12 Chapter 3. User’s Guide

hermes_core

3.2.5 Adding metadata attributes

Additional CDF file global metadata and variable metadata can be easily added to a HermesData data container. For
more information about the required metadata attributes please see the HERMES CDF Format Guide

Global Metadata Attributes

Global metadata attributes can be updated for a HermesData object using the object’s meta parameter which is an
OrderedDict containing all attributes.

Required Global Attributes

The HermesData class requires several global metadata attributes to be provided upon instantiation:

• Descriptor

• Data_level

• Data_version

A HermesData container cannot be created without supplying at lest this subset of global metadata attributes. For
assistance in defining required global attributes, please see the global_attribute_template() function.

Derived Global Attributes

The HermesDataSchema class derives several global metadata attributes required for ISTP compliance. The following
global attributes are derived:

• CDF_Lib_version

• Data_type

• Generation_date

• HERMES_version

• Logical_file_id

• Logical_source

• Logical_source_description

• Start_time

For more information about each of these attributes please see the HERMES CDF Format Guide

Using a Template for Global Metadata Attributes

A template of the required metadata can be obtained using the global_attribute_template() function:

>>> from collections import OrderedDict
>>> from hermes_core.timedata import HermesData
>>> HermesData.global_attribute_template()
OrderedDict([('DOI', None),

('Data_level', None),
('Data_version', None),

(continues on next page)

3.2. Opening and Writing HERMES Data 13

https://docs.python.org/3/library/collections.html#collections.OrderedDict

hermes_core

(continued from previous page)

('Descriptor', None),
('HTTP_LINK', None),
('Instrument_mode', None),
('Instrument_type', None),
('LINK_TEXT', None),
('LINK_TITLE', None),
('MODS', None),
('PI_affiliation', None),
('PI_name', None),
('TEXT', None)])

You can also pass arguments into the function to get a partially populated template:

>>> from collections import OrderedDict
>>> from hermes_core.timedata import HermesData
>>> HermesData.global_attribute_template(
... instr_name='eea',
... data_level='l1',
... version='0.1.0'
...)
OrderedDict([('DOI', None),

('Data_level', 'L1>Level 1'),
('Data_version', '0.1.0'),
('Descriptor', 'EEA>Electron Electrostatic Analyzer'),
('HTTP_LINK', None),
('Instrument_mode', None),
('Instrument_type', None),
('LINK_TEXT', None),
('LINK_TITLE', None),
('MODS', None),
('PI_affiliation', None),
('PI_name', None),
('TEXT', None)])

This can make the definition of global metadata easier since instrument teams or users only need to supply pieces of
metadata that are in this template. Additional metadata items can be added if desired. Once the template is instantiated
and all attributes have been filled out, you can use this during instantiation of your HermesData container.

Variable Metadata Attributes

Variable metadata requirements can be updated for a HermesData variable using the variable’s meta property which
is an OrderedDict of all attributes.

14 Chapter 3. User’s Guide

https://docs.python.org/3/library/collections.html#collections.OrderedDict

hermes_core

Required Variable Attributes

The HermesData class requires one variable metadata attribute to be provided upon instantiation:

• CATDESC : (Catalogue Description) This is a human readable description of the data variable.

Derived Variable Attributes

The HermesDataSchema class derives several variable metadata attributes required for ISTP compliance.

• TIME_BASE

• RESOLUTION

• TIME_SCALE

• REFERENCE_POSITION

• DEPEND_0

• DISPLAY_TYPE

• FIELDNAM

• FILLVAL

• FORMAT

• LABLAXIS

• SI_CONVERSION

• UNITS

• VALIDMIN

• VALIDMAX

• VAR_TYPE

For more information about each of these attributes please see the HERMES CDF Format Guide

Using a Template for Variable Metadata Attributes

A template of the required metadata can be obtained using the measurement_attribute_template() function:

>>> from collections import OrderedDict
>>> from hermes_core.timedata import HermesData
>>> HermesData.measurement_attribute_template()
OrderedDict([('CATDESC', None)])

If you use the add_measurement() function, it will automatically fill most of them in for you. Additional pieces of
metadata can be added if desired.

3.2. Opening and Writing HERMES Data 15

hermes_core

3.2.6 Visualizing data in a HermesData Container

The HermesData provides a quick way to visualize its data through plot. By default, a plot will be generated with
each measurement in its own plot panel.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from hermes_core.timedata import HermesData
>>> bx = np.concatenate([[0], np.random.choice(a=[-1, 0, 1], size=1000)]).cumsum(0)
>>> by = np.concatenate([[0], np.random.choice(a=[-1, 0, 1], size=1000)]).cumsum(0)
>>> bz = np.concatenate([[0], np.random.choice(a=[-1, 0, 1], size=1000)]).cumsum(0)
>>> ts = TimeSeries(time_start="2016-03-22T12:30:31", time_delta=3 * u.s, data={"Bx": u.
→˓Quantity(bx, "nanoTesla", dtype=np.int16)})
>>> input_attrs = HermesData.global_attribute_template("nemisis", "l1", "1.0.0")
>>> hermes_data = HermesData(timeseries=ts, meta=input_attrs)
>>> hermes_data.add_measurement(measure_name=f"By", data=u.Quantity(by, 'nanoTesla',␣
→˓dtype=np.int16))
>>> hermes_data.add_measurement(measure_name=f"Bz", data=u.Quantity(bz, 'nanoTesla',␣
→˓dtype=np.int16))
>>> fig = plt.figure()
>>> hermes_data.plot()
>>> plt.show()

20

0

Bx
 [n

T]

HERMES NEMISIS>Noise Eliminating Magnetometer Instrument in a Small Integrated System L1>Level 1

20

0

By
 [n

T]

12:40 13:00 13:20
Time (utc) 2127-May-07

0

20

40

Bz
 [n

T]

16 Chapter 3. User’s Guide

hermes_core

3.2.7 Writing a CDF File

The HermesData class writes CDF files using the pycdf module. This can be done using the save() method which
only requires a path to the folder where the CDF file should be saved. The filename is automatically derived consistent
with HERMES file naming requirements. If no path is provided it writes the file to the current directory. This function
returns the full path to the CDF file that was generated. From this you can validate and distribute your CDF file.

3.2.8 Validating a CDF File

The HermesData uses the istp module for CDF validation, in addition to custom tests for additional metadata. A
CDF file can be validated using the validate() method and by passing, as a parameter, the full path to the CDF file
to be validated:

>>> from hermes_core.util.validation import validate
>>> validation_errors = validate(cdf_file_path)

This returns a list[str] that contains any validation errors that were encountered when examining the CDF file. If
no validation errors were found the method will return an empty list.

3.3 HERMES CDF Format Guide

3.3.1 1. Introduction

The HermesDataSchema class provides an interface to examine the HERMES CDF Format Guide.

1.1 Purpose and Scope

This document is provided as a reference for construction of HERMES standard CDF files. It is intended to complement
information available from the Space Physics Data Facility (listed in Sec. 1.2). It lays down REQUIREMENTS and
RECOMMENDATIONS for Level 2 (and above) CDF files that are intended for public access, and should be taken
as RECOMMENDATIONs for all other mission CDFs. This document is based on discussions within the HERMES
Science Data Working Group (HSDWG) and personnel at NASA’s Space Physics Data Facility (SPDF). It is intended
to provide sufficient reference material to understand CDF files and the requirements for creating HERMES CDF files,
and to understand the structure and contents of the resulting CDF files.

1.2 References

Relevant documents that provide background material and support details provided in this guide are listed below:

• SPDF CDF User’s Guide

• SKTEditor

• ISTP Guidelines

• ISTP/IACG Global Attributes

3.3. HERMES CDF Format Guide 17

http://cdf.gsfc.nasa.gov/
http://spdf.gsfc.nasa.gov/sp_use_of_cdf.html
http://spdf.gsfc.nasa.gov/istp_guide/istp_guide.html
http://spdf.gsfc.nasa.gov/istp_guide/gattributes.html

hermes_core

3.3.2 2. HERMES Science Investigations

The HERMES Instrument Suite will make high-time resolution measurements of plasmas (ions and electrons) and
magnetic fields. The HERMES Instrument Suite consists of the following complement of instruments:

• Electron Electrostatic Analyzer (EEA): The EEA provides measurements of
low-energy electrons in the solar wind and in Earth’s deep magnetotail by measuring electron flux as func-
tions of energy and direction.

• Miniaturized Electron pRoton Telescope (MERIT): The MERiT instrument
measures the flux of high-energy electrons and ions with two telescopes pointing in opposite directions and
nominally spanning the forward and reverse Parker Spiral.

• Noise Eliminating Magnetometer In a Small Integrated System (NEMISIS):
NEMISIS is comprised of a fluxgate magnetometer (M0) at the end of a deployable boom and two inductive
magnetometers (M1, M2) mounted on the HERMES platform. Each sensor measures the vector magnetic
field at its location. Measurements from the 3 sensors are combined to reduce the contribution to the local
field due to Gateway.

• Solar Probe Analyzer for Ions (SPAN-I): The SPAN-i ion sensor measures
Interplanetary and Magnetotail ion flux as functions of direction and energy/charge from several eV/q to
20 keV/q. A time-of-flight section enables it to sort particles by their mass/charge ratio, permitting differ-
entiation of ion species.

HERMES Instrument Team Facilities (ITFs) are the principal institutions associated with each of the HERMES science
investigations. These facilities and their personnel provide support to the operation of their instruments and the overall
data processing and distribution effort for HERMES science data products. The institutions listed in Table 2-1 have
responsibility for each of the investigations and their corresponding instruments.

Table 1: Table 2-1 HERMES ITF Summary

HERMES Investigation Managing Institution Principal Investigator
Electron Electrostatic An-
alyzer (EEA)

Goddard Space Flight Center (GSFC)
D. Gershman

Miniaturized Elec-
tron pRoton Telescope
(MERIT)

Goddard Space Flight Center (GSFC)
S. Kanekal

Noise Eliminating Magne-
tometer In a Small Inte-
grated System (NEMISIS)

Goddard Space Flight Center (GSFC),
University of Michigan E. Zesta, M. Moldwin (Co-I),

Solar Probe Analyzer for
Ions (SPAN-I)

University of California, Berkeley
(UCB), Space Sciences Laboratory
(SSL)

R. Livi

3.3.3 3. Conventions

All HERMES scientific data products that will be shared between HERMES entities (e.g. ITFs, IDS groups) or made
available to the general research community will be stored as CDF data files and are expected to be compatible with
CDF version 3.5. Data that will not be shared beyond an individual team may be stored in any format that is convenient
for that team.

18 Chapter 3. User’s Guide

hermes_core

3.1 Science Product Naming Conventions

The HERMES data products will be produced with the following filename format where the individual identifying
components are described in Table 3-1. Additionally, to ensure software compatibility between disparate systems,
filenames will consist of all lowercase characters. Filenames are used as a system identifier for a logical grouping of
data and are also stored in the Logical_file_id global attribute field (see Section 4.1). It is expected that filenames
will be created dynamically from the attributes identified in Section 4 of this document.

Filename Format
scId_instrumentId_mode_dataLevel_optionalDataProductDescriptor_startTime_vX.Y.Z.ext

Table 2: Table 3-1: Filename Component Description

Short Name Description Valid Options
scID Spacecraft ID hermes
instrumentId Instrument or investigation identifier shortened to three

letter acronym.
eea, mrt, nms, spn

mode TBS TBS
dataLevel The level to which the data product has been processed l0, l1, ql, l2, l3, l4
optionalDataProductDe-
scriptor

This is an optional field that may not be needed for all
products. Where it is used, identifier should be short
(e.q. 3-8 characters) descriptors that are helpful to end-
users. If a descriptor contains multiple components, un-
derscores are used to separate those components.

An optional time span may
be specified as “2s” to
represent a data file that
spans two seconds. In this
case, “10s” and “5m” are
other expected values that
correspond with ten sec-
onds and 5 minutes re-
spectively.

startTime The start time of the contained data given in ISO 8601
format.

20230519T000003

vX.Y.Z The 3-part version number of the data product. Full de-
scription of this identifier is provided in Section 3.1.1 of
this document.

v0.0.0, v

.ext The required file extension, where CDF is required. cdf

3.1.1 Version Numbering Guidelines

The three-part version number contains the interface number, quality number, and bug fix/revision number. The initial
release of CDF data that is suitable for scientific publication should begin with “v1.Y.Z”. Each component of the
version number is incremented in integer steps, as needed, and Table 3-2 describes the instances in which the value
should be incremented. Release “v0.Y.Z” may be used for early development purposes.

3.3. HERMES CDF Format Guide 19

https://en.wikipedia.org/wiki/ISO_8601

hermes_core

Table 3: Table 3-2: Version Numbering Guidelines

Part Name Description
X Interface Number Increments in this number represent a significant change

to the processing software and/or to the content/structure
of the file. These changes may be incompatible with ex-
isting code. Increments in this number may require code
changes to software.

Y Quality Number This number represents a change in the quality of the
data in the file, such as change in calibration or increase
in fidelity. Changes should not impact software but may
require consideration when processing data.

Z Bug Fix / Revision Num-
ber

This number changes to indicate minor changes to the
contents of the file due to reprocessing of missing data.
Any dependent data products should generally be repro-
cessed if this value changes.

3.3.4 4. Global Attributes

Global attributes are used to provide information about the data set as an entity. Together with variables and variable
attributes, the global attributes make the data correctly and independently usable by someone not connected with the
instrument team, and hence, a good archive product.

The required, recommended, and optional global attributes that have been identified for use with HERMES data prod-
ucts are listed below. Additional global attributes can be defined but they must start with a letter and can otherwise
contain letters, numbers, and the underscore character (no other special characters allowed). Note that CDF attributes
are case-sensitive and must exactly follow what is shown here.

Detailed descriptions of the attributes listed below are available at the ISTP/IACG Global Attributes Webpage.

4.1 Required Global Attributes

The following global attributes shown in Table 4-1 are required with HERMES data products. HERMES-specific
values are provided where applicable. For each attribute the following information is provided:

• description: (str) A brief description of the attribute

• default: (str) The default value used if none is provided

• derived: (bool) Whether the attibute can be derived by the HERMES HermesDataSchema class

• required: (bool) Whether the attribute is required by HERMES standards

• validate: (bool) Whether the attribute is included in the validate() checks (Note, not all attributes that are
required are validated)

• overwrite: (bool) Whether the HermesDataSchema attribute derivations will overwrite an existing attribute
value with an updated attribute value from the derivation process.

Note that this table is derived from hermes_core/data/hermes_default_global_cdf_attrs_schema.yaml

20 Chapter 3. User’s Guide

http://spdf.gsfc.nasa.gov/istp_guide/gattributes.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hermes_core

Table 4: Table 4-1: Required Global Attributes

Attribute description default derived required validate overwrite
CDF_Lib_versionVersion of the CDF Binaries

library used to generate the
CDF File

True True False False

DOI DOI is a persistent Unique
Digital Identifier with
the form https://doi.
org/<PREFIX>/<SUFFIX>
with the <PREFIX> identi-
fying the DOI registration
authority and the <SUFFIX>
identifying the dataset. The
DOI should point to a landing
page for additional informa-
tion about the dataset. DOIs
are typically created by the
SPASE naming authority or
archive.

False True True False

Data_level This attribute is used in file
name creation and records the
level of processsing done on
the dataset. For HERMES
the following are valid val-
ues: - l0>Level 0 - l1>Level
1 - l2>Level 2 - l3>Level 3 -
l4>Level 4 - ql>Quicklook

False True False True

Data_product_descriptorThis is an optional field that
may not be needed for all
products. Where it is used,
identifier should be short (e.q.
3-8 characters) descriptors
that are helpful to end- users.
If a descriptor contains multi-
ple components, underscores
are used to separate those
components.

False False False True

Data_type This attribute is used by CDF
file writing software to cre-
ate a filename. It is a
combination of the following
filename components: mode,
data level, and optional data
product descriptor.

True True False True

Data_version This attribute identifies the
version (vX.Y.Z) of a particu-
lar CDF data file.

False True True False

Descriptor This attribute identifies the
name of the instrument or
sensor that collected the
data. Both a long name
and a short name are given.
For any data file, only a
single value is allowed. For
HERMES, the following are
valid values: - EEA>Electron
Electrostatic Analyzer -
MERIT>Miniaturized Elec-
tron pRoton Telescope -
NEMISIS> Noise Eliminat-
ing Magnetometer In a Small
Integrated System - SPAN-
I>Solar Probe Analyzer for
Ions

False True True False

Discipline This attribute describes both
the science discipline and sub
discipline. For HERMES, this
value should always be “Space
Physics>Magnetospheric Sci-
ence.”

Space
Physics>Magnetospheric
Science

False True True False

Genera-
tion_date

Date stamps the creation
of the file using the syntax
yyyymmdd, e.g., “

True True True True

HER-
MES_version

Version of hermes_core
originally used to generate the
given CDF File

True True False False

HTTP_LINK The ‘HTTP_LINK’,
‘LINK_TEXT’, and
‘LINK_TITLE’ attributes
store the URL with a de-
scription of this dataset at
the HERMES SDC. The use
of HTTP_LINK attribute
requires the existence and
equal number of corre-
sponding LINK_TEXT and
LINK_TITLE attributes. If
text is not needed for these
attributes, use an empty string
“”.

False True True False

Instru-
ment_mode

TBS False True False False

Instru-
ment_type

This attribute is used to fa-
cilitate making choices of in-
strument type. More than one
entry is allowed. Acceptable
values for HERMES include:
- Magnetic Fields (space) -
Particles (space) - Plasma and
Solar Wind - Ephemeris ->
Ephemeris/Attitude/Ancillary

False True True False

LINK_TEXT The ‘HTTP_LINK’,
‘LINK_TEXT’, and
‘LINK_TITLE’ attributes
store the URL with a de-
scription of this dataset at
the HERMES SDC. The use
of HTTP_LINK attribute
requires the existence and
equal number of corre-
sponding LINK_TEXT and
LINK_TITLE attributes. If
text is not needed for these
attributes, use an empty string
“”.

False True True False

LINK_TITLEThe ‘HTTP_LINK’,
‘LINK_TEXT’, and
‘LINK_TITLE’ attributes
store the URL with a de-
scription of this dataset at
the HERMES SDC. The use
of HTTP_LINK attribute
requires the existence and
equal number of corre-
sponding LINK_TEXT and
LINK_TITLE attributes. If
text is not needed for these
attributes, use an empty string
“”.

False True True False

Logi-
cal_file_id

This attribute stores the name
of the CDF file but with-
out the file extension (e.g.
“.cdf”). This attribute is re-
quired to avoid loss of the
original source in the case of
accidental (or intentional) re-
naming.

True True True True

Logi-
cal_source

This attribute determines the
file naming convention in the
SKT Editor and is used by
CDA Web. It is composed
of the following values: -
source_name - (e.g. space-
craft identifier) - descriptor
- (e.g. instrument identifier
- see Section Error! Refer-
ence source not found.) -
data_type - (e.g. mode, data
level, and optional data prod-
uct descriptor - value come
from ‘Data_type’ attribute)

True True True True

Logi-
cal_source_description

This attribute writes out the
full words associated with
the encrypted Logical_source
above, e.g., “Level 1 Dual
Electron Spectrometer Survey
Data”. Users on CDAWeb see
this value on their website.

True True True True

MODS This attribute is an SPDF stan-
dard global attribute, which
is used to denote the his-
tory of modifications made
to the CDF data set. The
MODS attribute should con-
tain a description of all signif-
icant changes to the data set,
essentially capturing a log of
high- level release notes. This
attribute can have as many en-
tries as necessary and should
be updated if the Interface
Number (“X”) of the version
number changes.

False True True False

Mis-
sion_group

This attribute has a single
value and is used to facili-
tate making choices of source
through CDAWeb. This value
should be “HERMES.”

HERMES False True True False

PI_affiliation This attribute value should
include the HERMES mis-
sion PI affiliation followed
by a comma-separated list of
any Co-I affiliations that are
responsible for this particu-
lar dataset. The following
are valid HERMES values,
of which the abbreviations
should be used exclusively
within this attribute value, and
the full text of the affiliation
included in the general ‘text’
attribute as it is used solely in
plot labels. - GSFC - God-
dard Space Flight Center -
UCB - University of Califor-
nia, Berkeley - SSL - Space
Sciences Laboratory, UCB -
UM - University of Michigan

False True True False

PI_name This attribute value should
include first initial and last
name of the HERMES mis-
sion PI followed by a comma-
separated list of any Co-Is that
are responsible for this partic-
ular dataset.

False True True False

Project This attribute identifies the
name of the project and
indicates ownership. For
HERMES, this value should
be “STP>Solar-Terrestrial
Physics”.

STP>Solar-
Terrestrial
Physics

False True True False

Source_name This attribute identifies the
observatory where the data
originated. The following are
valid values for HERMES:
- HERMES>Heliophysics
Environmental and Radiation
Measurement Experiment
Suite

HER-
MES>Heliophysics
Environ-
mental and
Radiation
Mea-
surement
Experi-
ment Suite

False True True False

Start_time The start time of the con-
tained data given in YYYYM-
MDD_hhmmss

True True False True

TEXT This attribute is an SPDF stan-
dard global attribute, which is
a text description of the exper-
iment whose data is included
in the CDF. A reference to a
journal article(s) or to a World
Wide Web page describing the
experiment is essential and
constitutes the minimum re-
quirement. A written descrip-
tion of the data set is also
desirable. This attribute can
have as many entries as neces-
sary to contain the desired in-
formation. Typically, this at-
tribute is about a paragraph
in length and is not shown
on CDAWeb. CDAWeb is
the web portal for access to
SPDF data, available at https:
//cdaweb.gsfc.nasa.gov.

False True True False

3.3. HERMES CDF Format Guide 21

https://doi.org
https://doi.org
https://cdaweb.gsfc.nasa.gov
https://cdaweb.gsfc.nasa.gov

hermes_core

4.2 Recommended Attributes

The following global attributes are recommended but not required with HERMES data products. HERMES-specific
values are provided where applicable.

Table 5: Table 4-2: Recommended Attributes

Attribute Description
Acknowledgement This field indicates how the data should be cited.
Generated_by This attribute indicates where users can get more information about this data

and/or check for new versions.

4.3 Optional Attributes

Table 6: Table 4-2: Optional Attributes

Attribute Description
Parents This attribute lists the parent data files for files of derived and merged data

sets. The syntax for a CDF parent is: “CDF>logical_file_id”. Multiple en-
try values are used for multiple parents. This attribute is required for any
HERMES data products that are derived from 2 or more data sources and
the file names of parent data should be clearly identified. CDF parents may
include source files with non-cdf extensions.

Skeleton_version This is a text attribute containing the skeleton file version number.
Rules_of_use Text containing information on citability and/or PI access restrictions. This

may point to a World Wide Web page specifying the rules of use. Rules of
Use are determined on both a mission and instrument basis, at the discretion
of the PI.

Time_resolution Specifies time resolution of the file, e.g., “3 seconds”.

3.3.5 5. Variables

There are three types of variables that should be included in CDF files: * data, * support data, * metadata.

Additionally, required attributes are listed with each variable type listed below.

To facilitate data exchange and software development, variable names should be consistent across the HERMES in-
struments and four spacecraft. Additionally, it is preferable that data types are consistent throughout all HERMES data
products (e.g. all real variables are CDF_REAL4, all integer variables are CDF_INT2, and flag/status variables are
UINT2). This is not to imply that only these data types are allowable within HERMES CDF files. All CDF supported
data types are available for use by HERMES.

For detailed information and examples, please see the ISTP/IACG Webpage

22 Chapter 3. User’s Guide

hermes_core

5.1 Data

These are variables of primary importance (e.g., density, magnetic field, particle flux). Data is always time (record)
varying but can be of any dimensionality or CDF supported data type. Real or Integer data are always defined as having
one element.

5.1.1 Naming

HERMES data variables must adhere to the following naming convention * scId_instrumentId_paramName

An underscore is used to separate different fields in the variable name. It is strongly recommended that variable names
employ further fields, qualifiers and information designed to identify unambiguously the nature of the variable, instru-
ment mode and data processing level, with sufficient detail to lead the user to the unique source file which contains the
variable. It is recommended that these follow the order shown below.

• scId_instrumentId_paramName[_coordSys][_paramQualifier][_subModeLevel][_mode][_dataLevel]

where the required fields are described in Table 5-1 and the optional fields are described in Table 5-2. An example data
variable would be hermes_eea_n_gse_l2.

Table 7: Table 5-1: Required Data Variable Fields

Required Field Name Description
scId Spacecraft identifier, see Table 3-1 for acceptable values
instrumentId Instrument or investigation identifier, see Table 3-1 for acceptable values and

note the caveats listed in Section 5.1.1.1.
paramName Data parameter identifier, a short (a few letters) representation of the physical

parameter held in the variable.

Table 8: Table 5-2: Optional Data Variable Fields

Optional Field Name Description
coordSys An acronym for the coordinate system in which the parameter is cast.
paramQualifier Parameter descriptor, which may include multiple components separated by

a “_” as needed (e.g. “pa_0” indicates a pitch angle of 0).
subModeLevel Qualifier(s) to include mode and data level information supplementary to the

following two fields.
mode See Table 3-1 for acceptable values.
dataLevel See Table 3-1 for acceptable values.

5.1.1.1 Caveats

Note the following caveats in the variable naming conventions:

• CDF variable names must begin with a letter and can contain numbers and underscores, but no other special
characters.

• In general, the instrumentId field follows the convention used for file names as defined in Section 3.1. However,
since variable names cannot contain a hyphen, an underscore should be used instead of a hyphen when needing
to separate instrument components. For instance, “eea-ion” is a valid instrumentId in a filename but when used
in a variable name, “eea_ion” should be used instead.

3.3. HERMES CDF Format Guide 23

hermes_core

• To ensure software compatibility between disparate systems, parameter names will consist of all lowercase char-
acters.

5.1.2 Required Epoch Variable

All HERMES CDF data files must contain at least one variable of data type CDF_TIME_TT2000, typically named
“Epoch”. This variable should normally be the first variable in each CDF data set. All time varying variables in the
CDF data set will depend on either this “epoch” variable or on another variable of type CDF_TIME_TT2000 (e.g.
hermes_eea_epoch). More than one CDF_TIME_TT2000 type variable is allowed in a data set to allow for more than
one time resolution, using the required DEPEND_0 attribute (see Section 5.5) to associate a time variable to a given
data variable. It is recommended that all such time variables use “epoch” within their variable name.

For ISTP, but not necessarily for all HERMES data, the time value of a record refers to the center of the accumulation
period for the record if the measurement is not an instantaneous one. All HERMES time variables used as DEPEND_0
are strongly recommended to have DELTA_PLUS_VAR and DELTA_MINUS_VAR attributes which delineate the
time interval over which the data was sampled, integrated, or otherwise representative of. This also locates the timetag
within that interval.

The epoch datatype, CDF_TIME_TT2000, is defined as an 8-byte signed integer with the characteristics shown in
Table 5-3.

Table 9: Table 5-3: Characteristics of CDF_TIME_TT2000

Name Example
time_base J2000 (Julian date 2451545.0 TT or 2000 January 1, 12h TT)
resolution nanoseconds
time_scale Terrestrial Time (TT)
units nanoseconds
reference_position rotating Earth Geoid

Given a current list of leap seconds, conversion between TT and UTC is straightforward (TT = TAI + 32.184s; TT
= UTC + deltaAT + 32.184s, where deltaAT is the sum of the leap seconds since 1960; for example, for 2009,
deltaAT = 34s). Pad values of - 9223372036854775808 (0x8000000000000000) which corresponds to 1707-09-
22T12:13:15.145224192; recommended FILLVAL is same.

It is proposed that the required data variables VALIDMIN and VALIDMAX are given values corresponding to the
dates 1990-01-01T00:00:00 and 2100-01-01T00:00:00 as these are well outside any expected valid times.

5.1.3 Required Attributes: Data Variables

Data variables require the following attributes:

• CATDESC

• DEPEND_0

• DEPEND_i [for dimensional data variables]

• DISPLAY_TYPE

• FIELDNAM

• FILLVAL

• FORMAT or FORM_PTR

• LABLAXIS or LABL_PTR_i

24 Chapter 3. User’s Guide

hermes_core

• SI_CONVERSION

• UNITS or UNIT_PTR

• VALIDMIN and VALIDMAX

• VAR_TYPE

In addition, the following attributes are strongly recommended for vectors, tensors and quaternions which are held in
or relate to a particular coordinate system:

• COORDINATE_SYSTEM

• TENSOR_ORDER

• REPRESENTATION_i

• OPERATOR_TYPE [for quaternions]

5.1.4 Attributes for DEPEND_i Variables

Variables appearing in a data variable’s DEPEND_i attribute require a minimal set of their own attributes to fulfill their
role in supporting the data variable. The standard SUPPORT_DATA variable attributes are listed in Section 5.3.2.
Other standard variable attributes are optional.

5.2 Quaternions

HERMES mec files contain unit quaternions which can be employed to rotate from one coordinate system to the other.
For an arbitrary rotation, that rotational information can expressed as a rotation through an angle about a unit vector u.
The Wikipedia page on “Quaternions and Spatial Rotation” provides details and the relationship between the quaternion
and a 3x3 rotation matrix. In the mec files, quaternions are represented by:

q = (qx, qy, qz, qw)

in which qw (also known elsewhere as qc) = cos (/2) and (qx, qy, qz) = u sin (/2). Extensions of existing attribute stan-
dards are strongly recommended to be used to describe such quaternions. The following attributes serve this purpose:

• OPERATOR_TYPE=UNIT_QUATERNION

• REPRESENTATION_1 = “x”, “y”, “z”, “c” [in the right order; the “c” denotes the cosineterm]

• COORDINATE_SYSTEM=XXX [standard syntax, as for vectors; the FROM frame]

• TO_COORDINATE_SYSTEM=YYY [same syntax; the TO frame]

Such a quaternion will take a vector given in the XXX coordinate system and generate its components in the YYY
coordinate system.

5.3 Support Data

These are variables of secondary importance employed as DEPEND_i variables as described in section 5.1.3 (e.g.,
time, energy_bands associated with particle flux), but they may also be used for housekeeping or other information not
normally used for scientific analysis.

3.3. HERMES CDF Format Guide 25

hermes_core

5.3.1 Naming

Support data variable names must begin with a letter and can contain numbers and underscores, but no other special
characters. Support data variable names need not follow the same naming convention as Data Variables (5.1.1) but
may be shortened for convenience.

5.3.2 Required Attributes: Support Variables

• CATDESC

• DEPEND_0 (if time varying)

• FIELDNAM

• FILLVAL (if time varying)

• FORMAT/FORM_PTR

• LABLAXIS or LABL_PTR_i

• SI_CONVERSION

• UNITS/UNIT_PTR

• VALIDMIN (if time varying)

• VALIDMAX (if time varying)

• VAR_TYPE = “support_data”

Other attributes may also be present.

5.4 Metadata

These are variables of secondary importance (e.g. a variable holding “Bx”, “By”, “Bz” to label magnetic field). Meta-
data are usually text strings as opposed to the numerical values held in DEPEND_i support data.

5.4.1 Naming

Metadata variable names must begin with a letter and can contain numbers and underscores, but no other special
characters. Metadata variable names need not follow the same naming convention as Data Variables (5.1.1) but may
be shortened for convenience.

5.4.2 Required Attributes: Metadata Variables

• CATDESC

• DEPEND_0 (if time varying, this value must be “Epoch”)

• FIELDNAM

• FILLVAL (if time varying)

• FORMAT/FORM_PTR

• VAR_TYPE = metadata

26 Chapter 3. User’s Guide

hermes_core

5.5 Variable Attribute Schema

The following variable attributes shown in Table 5-4 are required with HERMES data products. HERMES-specific
values are provided where applicable. For each attribute the following information is provided:

• description: (str) A brief description of the attribute

• derived: (bool) Whether the attibute can be derived by the HERMES HermesDataSchema class

• required: (bool) Whether the attribute is required by HERMES standards

• overwrite: (bool) Whether the HermesDataSchema attribute derivations will overwrite an existing attribute
value with an updated attribute value from the derivation process.

• valid_values: (list) List of allowed values the attribute can take for HERMES products, if applicable

• alternate: (str) An additional attribute name that can be treated as an alternative of the given attribute. Not all
attributes have an alternative and only one of a given attribute or its alternate are required.

• var_types: (str) A list of the variable types that require the given attribute to be present.

Note that this table is derived from hermes_core/data/hermes_default_variable_cdf_attrs_schema.yaml

Table 10: Table 5-4 HERMES Variable Attribute Schema

At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

TIME_BASEfixed (0AD, 1900, 1970
(POSIX), J2000 (used by
CDF_TIME_TT2000), 4714
BC (Julian)) or flexible
(provider-defined)

True True False

RES-
O-
LU-
TION

Using ISO8601 relative time
format, for example: “1s” = 1
second. Resolution provides
the smallest change in time
that is measured.

True True False

TIME_SCALETT (same as TDT, used by
CDF_TIME_TT2000), TAI
(same as IAT, TT-32.184s),
UTC (includes leap seconds),
TDB (same as SPICE ET),
EME1950 [default: UTC]

True True False

continues on next page

3.3. HERMES CDF Format Guide 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

REF-
ER-
ENCE_POSITION

Topocenter (local), Geocenter
, rotating Earth geoid (used
by CDF_TIME_TT2000).
Reference_Position is op-
tional metadata to account for
time variance with position
in the gravity wells and with
relative velocity. While
we could use a combined
TimeSystem attribute that
defines mission-specific time
scales where needed, such
as UTC-at-STEREO-B, it’s
cleaner to keep them sepa-
rate as Time_Scale=UTC and
Reference_Position=STEREO-
B.

True True False

LEAP_SECONDS_INCLUDEDcomma-delimited list (within
brackets) of leap seconds
included in the form of a
lists of ISO8601 times when
each leap second was added,
appended with the size of
the leap second in ISO8601
relative time (+/- time, most
commonly: “+1s”) [default:
standard list of leap sec-
onds up to time of data].
Leap_Seconds_Included is
needed to account for time
scales that don’t have all
34 (in 2009) leap seconds
and for the clocks in various
countries that started using
leap seconds at different
times. The full list is required
to handle the equally or more
common case where a time
scale starts at a pecific UTC
but continues on without leap
seconds in TAI mode; this
is basically what missions
that don’t add leap seconds
are doing. $ cat tai-utc.dat
| awk ‘ORS=”,” { val = $7
- prev } {prev = $7} { print
$1$2”01+” val “s” }’

False False False

continues on next page

28 Chapter 3. User’s Guide

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

AB-
SO-
LUTE_ERROR

Absolute or systematic error,
in same units as Units at-
tribute.

False False False

REL-
A-
TIVE_ERROR

Relative or random error, in
same units as Units attribute -
to specify the accuracy of the
time stamps relative to each
other. This is usually much
smaller than Absolute_Error.

False False False

BIN_LOCATIONrelative position of time stamp
to the data measurement bin,
with 0.0 at the beginning of
time bin and 1.0 at the end.
Default is 0.5 for the time at
the center of the data mea-
surement. Since clock read-
ings are usually truncated, the
real value may be closer to
0.0.

False False False

CAT-
DESC

This is a human readable de-
scription of the data variable.
Generally, this is an 80- char-
acter string which describes
the variable and what it de-
pends on.

False True False data sup-
port_data
metadata

DELTA_MINUS_VARDEPEND_i variables are
typically physical values
along the corresponding
i-th dimension of the par-
ent data variable, such as
energy levels or spectral
frequencies. The discreet
set of values are located
with respect to the sampling
bin by DELTA_PLUS_VAR
and DELTA_MINUS_VAR,
which hold the variable
name containing the distance
from the value to the bin
edge. It is strongly rec-
ommended that HERMES
DEPEND_i variables in-
clude DELTA_PLUS_VAR
and DELTA_MINUS_VAR
attributes that point to the ap-
propriate variable(s) located
elsewhere in the CDF file.

False False False

continues on next page

3.3. HERMES CDF Format Guide 29

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

DELTA_PLUS_VARDEPEND_i variables are
typically physical values
along the corresponding
i-th dimension of the par-
ent data variable, such as
energy levels or spectral
frequencies. The discreet
set of values are located
with respect to the sampling
bin by DELTA_PLUS_VAR
and DELTA_MINUS_VAR,
which hold the variable
name containing the distance
from the value to the bin
edge. It is strongly rec-
ommended that HERMES
DEPEND_i variables in-
clude DELTA_PLUS_VAR
and DELTA_MINUS_VAR
attributes that point to the ap-
propriate variable(s) located
elsewhere in the CDF file.

False False False

DE-
PEND_0

Explicitly ties a data variable
to the time variable on which
it depends. All variables
which change with time must
have a DEPEND_0 attribute
defined. See section 5.2.1
which specifies the HERMES
usage of DEPEND_0.

True True False data

continues on next page

30 Chapter 3. User’s Guide

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

DE-
PEND_i

Ties a dimensional data vari-
able to a SUPPORT_DATA
variable on which the i-th di-
mension of the data variable
depends. The number of DE-
PEND attributes must match
the dimensionality of the vari-
able, i.e., a one-dimensional
variable must have a DE-
PEND_1, a two-dimensional
variable must have a DE-
PEND_1 and a DEPEND_2
attribute, etc. The value of
the attribute must be a vari-
able in the same CDF data
set. It is strongly recom-
mended that DEPEND_i vari-
ables hold values in physi-
cal units. DEPEND_i vari-
ables also require their own
attributes, as described in sec-
tion 5.1.4.

False False False

DIS-
PLAY_TYPE

This tells automated software,
such as CDAWeb, how the
data should be displayed.

True True False time_series
time_series>noerrorbars
spectrogram
stack_plot
image

data

FIELD-
NAM

A shortened version of CAT-
DESC which can be used to
label a plot axis or as a data
listing heading. This is a
string, up to ~30 characters in
length.

True True False data sup-
port_data
metadata

FIL-
L-
VAL

Identifies the fill value used
where data values are known
to be bad or missing. FIL-
LVAL is required for time-
varying variables. Fill data
are always non-valid data.
The ISTP standard fill values
are listed in Table 5-4.

True True False data sup-
port_data
metadata

continues on next page

3.3. HERMES CDF Format Guide 31

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

FOR-
MAT

This field allows software to
properly format the associ-
ated data when displayed on
a screen or output to a file.
Format can be specified using
either Fortran or C format
codes. For instance, “F10.3”
indicates that the data should
be displayed across 10 char-
acters where 3 of those
characters are to the right of
the decimal. For a descrip-
tion of FORTRAN formatting
codes see the docs here:
https://docs.oracle.com/
cd/E19957-01/805-4939/
z40007437a2e/index.html

True True False FORM_PTR data sup-
port_data
metadata

FORM_PTRThe value of this field is a
variable which stores the char-
acter string that represents the
desired output format for the
associated data.

False False False FORMAT

LABLAXISUsed to label a plot axis or to
provide a heading for a data
listing. This field is generally
6-10 characters. Only one of
LABLAXIS or LABL_PTR_i
should be present.

True True False LABL_PTR_1 data sup-
port_data

continues on next page

32 Chapter 3. User’s Guide

https://docs.oracle.com/cd/E19957-01/805-4939/z40007437a2e/index.html
https://docs.oracle.com/cd/E19957-01/805-4939/z40007437a2e/index.html
https://docs.oracle.com/cd/E19957-01/805-4939/z40007437a2e/index.html

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

LABL_PTR_iUsed to label a dimensional
variable when one value of
LABLAXIS is not sufficient
to describe the variable
or to label all the axes.
LABL_PTR_i is used instead
of LABLAXIS, where i can
take on any value from 1
to n where n is the total
number of dimensions of
the original variable. The
value of LABL_PTR_1 is a
variable which will contain
the short character strings
which describe the first
dimension of the original
variable. The value of the
attribute must be a variable
in the same CDF data set and
is generally 6-10 characters.
Only one of LABLAXIS
or LABL_PTR_i should be
present.

False False False LABLAXIS

SI_CONVERSIONThe conversion factor to SI
units. This is the factor that
the variable must be multi-
plied by in order to convert
it to generic SI units. This
parameter contains two text
fields separated by the “>”
delimiter. The first compo-
nent is the conversion factor
and the second is the stan-
dard SI unit. Units are de-
fined according to their stan-
dard SI symbols (ie. Tesla =
T, Newtons = N, Meters = m,
etc.) For data variables that
are inherently unitless, and
thus lack a conversion factor,
this data attribute will be “ > “
where ‘ ‘ is a blank space and
the quotation marks are not
included. Units which are not
conveniently transformed into
SI should follow the blank
syntax “ > “ described above.

True True False data sup-
port_data

continues on next page

3.3. HERMES CDF Format Guide 33

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

UNITSA 6-20 character string that
identifies the units of the
variable (e.g. nT for magnetic
field). Use a blank character,
rather than “None” or “unit-
less”, for variables that have
no units (e.g., a ratio or a di-
rection cosine). An active list
of HERMES standard UNITS
and their SI_CONVERSIONs
is maintained on the
mission web-pages at
https://lasp.colorado.edu/
galaxy/display/HERMES/
Units+of+Measure, accessi-
ble via the HERMES Science
Working Team pages. Those
pages also lay out the rules
for formatting the UNITS
string.

True True False UNIT_PTR data sup-
port_data

UNIT_PTRThe value of this field is a
variable which stores short
character strings which iden-
tify the units of the variable.
Use a blank character, rather
than “None” or “unitless”, for
variables that have no units
(e.g., a ratio or a direction co-
sine). The value of this at-
tribute must be a variable in
the same CDF data set.

False False False UNITS

VALID-
MIN

The minimum value for a par-
ticular variable that is ex-
pected over the lifetime of
the mission. Used by appli-
cation software to filter out
values that are out of range.
The value must match the data
type of the variable.

True True False data sup-
port_data

VALID-
MAX

The maximum value for a
particular variable that is ex-
pected over the lifetime of
the mission. Used by appli-
cation software to filter out
values that are out of range.
The value must match the data
type of the variable.

True True False data sup-
port_data

continues on next page

34 Chapter 3. User’s Guide

https://lasp.colorado.edu/galaxy/display/HERMES/Units+of+Measure
https://lasp.colorado.edu/galaxy/display/HERMES/Units+of+Measure
https://lasp.colorado.edu/galaxy/display/HERMES/Units+of+Measure

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

VAR_TYPEUsed in CDAWeb to indicate
if the data should be used di-
rectly by users.

True True False data sup-
port_data
metadata ig-
nore_data

data sup-
port_data
metadata

CO-
OR-
DI-
NATE_SYSTEM

All variables for which the
values are dependent on
the system of coordinates
are strongly recommended
to have this attribute. This
includes both full vectors,
tensors, etc. or individual
values, e.g. of an an-
gle with respect to some
axis. The attribute is a
text string which takes the
form: “XXX[>optional long
name]”

False False False

TEN-
SOR_ORDER

All variables which hold
physical vectors, tensors,
etc., or sub-parts thereof,
are strongly recommended
to have their tensorial
properties held by this
numerical value. Vectors
have TENSOR_ORDER=1,
pressure tensors have TEN-
SOR_ORDER=2, etc.
Variables which hold single
components or sub-parts of
a vector or tensor, e.g., the
x-component of velocity
or the three diagonal ele-
ments of a tensor, use this
attribute to establish the
underlying object from which
they are extracted. TEN-
SOR_ORDER is a number,
usually held as a CDF_INT4,
rather than a character string.

False False False

continues on next page

3.3. HERMES CDF Format Guide 35

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

REP-
RE-
SEN-
TA-
TION_i

This strongly recommended
attribute holds the way vec-
tor or tensor variables are
held, e.g., as Cartesian or po-
lar forms, and their sequence
order in the dimension i in
which they are held. Carte-
sians are indicated by x,y,z;
polar coordinates by r (magni-
tude), t (theta - from z-axis),
p (phi - longitude or azimuth
around z-axis from x axis), l
(lambda = latitude). Exam-
ples follow.

False False False

OP-
ER-
A-
TOR_TYPE

This has been introduced to
describe HERMES quater-
nions (see Section 5.2
below). It has allowed values
“UNIT_QUATERNION”
or “ROTATION_MATRIX”
although other values could
be added. Unit quaternions
correspond to pure spatial
rotations.

False False False

WC-
SAXES

This is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
The value field shall contain
a non-negative integer no
greater than 999, representing
the number of axes in the
associated data array.

True False False

MJ-
DREF

This is a FITS WCS Keyword
being repurposed for handling
WCS transformations with
high-dimensional or spectral
CDF data variables. The
value shall contain a floating
point number representing
the reference time position
of the time stamps along the
0’th axis of the measurement.

True False False

continues on next page

36 Chapter 3. User’s Guide

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

TIME-
U-
NIT

This is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
The value shall contain a
character string giving the
units of the time stamps along
the 0’th axis of the mea-
surement. The TIMEUNIT
should match the CUNITi
along the time axis of the
measurement

True False False

TIMEDELThis is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
The value shall contain a
floating point number repre-
senting the resolution of the
time stamps along the 0’th
axis of the measurement. The
TIMEDEL should match the
CRDELi along the time axis
of the measurement.

True False False

CNAMEiThis is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
This metadata attribte should
be used for the i’th dimension
(1-based) and reapeated for
all WCSAXES dimensions.
The value shall contain a
charachter string repres-
nting the name of the i’th
axis. The name is used for
comment/documentation
purposes only and is not
used as a part of the i’th axis
coordinate transformations.

True False False

continues on next page

3.3. HERMES CDF Format Guide 37

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

CTYPEiThis is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
This metadata attribte should
be used for the i’th dimension
(1-based) and reapeated for
all WCSAXES dimensions.
The value field shall contain
a character string, giving
the name of the coordinate
represented by axis i.

True False False

CU-
NITi

This is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
This metadata attribte should
be used for the i’th dimension
(1-based) and reapeated for
all WCSAXES dimensions.
The value shall be the units
along axis i, compatible
with CTYPEi to be used
for scaling and coordinate
transformations along the i’th
axis.

True False False

continues on next page

38 Chapter 3. User’s Guide

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

CR-
PIXi

This is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
This metadata attribte should
be used for the i’th dimension
(1-based) and reapeated for
all WCSAXES dimensions.
The value field shall contain
a floating point number,
identifying the location of
a reference point along axis
i, in units of the axis index.
This value is based upon a
counter that runs from 1 to
NAXISn with an increment
of 1 per pixel. The reference
point value need not be that
for the center of a pixel nor lie
within the actual data array.
Use comments to indicate the
location of the index point
relative to the pixel.

True False False

CR-
VALi

This is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
This metadata attribte should
be used for the i’th dimension
(1-based) and reapeated for
all WCSAXES dimensions.
The value field shall contain a
floating point number, giving
the value of the coordinate
specified by the CTYPEn
keyword at the reference
point CRPIXi.

True False False

continues on next page

3.3. HERMES CDF Format Guide 39

hermes_core

Table 10 – continued from previous page
At-
tribute

description de-
rived

re-
quired

over-
write

valid_values alternate var_types

CDELTiThis is a FITS WCS Keyword
being repurposed for han-
dling WCS transformations
with high-dimensional or
spectral CDF data variables.
This metadata attribte should
be used for the i’th dimension
(1-based) and reapeated for
all WCSAXES dimensions.
The value field shall contain a
floating point number giving
the partial derivative of the
coordinate specified by the
CTYPEi keywords with
respect to the pixel index,
evaluated at the reference
point CRPIXi, in units of the
coordinate specified by the
CTYPEi keyword.

True False False

3.4 Customization and Global Configuration

3.4.1 The configrc file

This package uses a configrc configuration file to customize certain properties. You can control a number of key
features of such as where your data will download to. HERMES packages look for this configuration file in a platform
specific directory, which you can see the path for by running:

>>> import hermes_core
>>> hermes_core.print_config()

3.4.2 Using your own configrc file

To maintain your own customizations, you must place your customized configrc inside the appropriate configuration
folder (which is based off the operating system you are working on). The AppDirs module provided by the sunpy
package is used to figure out where to look for your configuration file.

Warning: Do not edit the configrc file directly in the Python package as it will get overwritten every time you
re-install or update the package.

You can copy the file below, customize it, and then place your customized configrc file inside your config folder.

If you work in our developer environment you can place your configuration file in this directory:

/home/vscode/.config/hermes_core/

40 Chapter 3. User’s Guide

https://github.com/sunpy/sunpy/blob/main/sunpy/extern/appdirs.py
https://docs.sunpy.org/en/stable/reference/sunpy.html#module-sunpy

hermes_core

If you do not use our developer environment, you can run the following code to see where to place it on your specific
machine as well:

>>> from hermes_core import util
>>> print(util.config._get_user_configdir())
/home/vscode/.config/hermes_core

Note: For more information on where to place your configuration file depending on your operating system, you can
refer to the AppDirs module docstrings.

To learn more about how to set-up your development environment see Developer Environment.

See below (A sample configrc file) for an example configuration file.

3.4.3 Dynamic settings

You can also dynamically change most of the default settings. One setting that cannot be changed is the location of the
log file which is set on import. All settings are stored in a Python ConfigParser instance called hermes_core.config,
which is global to the package. Settings can be modified directly, for example:

import hermes_core
hermes_core.config.set('downloads', 'download_dir', '/home/user/Downloads')

A sample configrc file

;
; Configuration
;
; This is the default configuration file

;;;;;;;;;;;;;;;;;;;
; General Options ;
;;;;;;;;;;;;;;;;;;;
[general]

; Time Format to be used for displaying time in output (e.g. graphs)
; The default time format is based on ISO8601 (replacing the T with space)
; note that the extra '%'s are escape characters
time_format = %Y-%m-%d %H:%M:%S

;;;;;;;;;;;;;
; Downloads ;
;;;;;;;;;;;;;
[downloads]

; Location to save download data to. Path should be specified relative to the
; HERMES working directory.
; Default value: data/
download_dir = data

(continues on next page)

3.4. Customization and Global Configuration 41

https://github.com/sunpy/sunpy/blob/1459206e11dc0c7bfeeeec6aede701ca60a8630c/sunpy/extern/appdirs.py#L165

hermes_core

(continued from previous page)

;;;;;;;;;;;;
; Logger ;
;;;;;;;;;;;;
[logger]

Threshold for the logging messages. Logging messages that are less severe
than this level will be ignored. The levels are 'DEBUG', 'INFO', 'WARNING',
'ERROR'
log_level = INFO

Whether to use color for the level names
use_color = True

Whether to log warnings.warn calls
log_warnings = True

Whether to log exceptions before raising them
log_exceptions = True

Whether to always log messages to a log file
log_to_file = True

The file to log messages to
log_file_path = hermes.log

Threshold for logging messages to log_file_path
log_file_level = INFO

Format for log file entries
log_file_format = %(asctime)s, %(origin)s, %(levelname)s, %(message)s

3.5 Logging system

3.5.1 Overview

The logging system is an adapted version of AstropyLogger. Its purpose is to provide users the ability to decide
which log and warning messages to show, to capture them, and to send them to a file.

All messages provided by HERMES use this logging facility which is based on the Python logging module rather
than print statements.

Messages can have one of several levels, in increasing order of importance:

• DEBUG: Detailed information, typically of interest only when diagnosing problems.

• INFO: A message conveying information about the current task, and confirming that things are working as ex-
pected

• WARNING: An indication that something unexpected happened, and that user action may be required.

• ERROR: indicates a more serious issue where something failed but the task is continuing

• CRITICAL: A serious error, indicating that the program itself may be unable to continue running.

42 Chapter 3. User’s Guide

https://docs.astropy.org/en/stable/api/astropy.logger.AstropyLogger.html#astropy.logger.AstropyLogger
https://docs.python.org/3/library/logging.html#module-logging

hermes_core

By default, all messages except for DEBUG messages are displayed.

3.5.2 Configuring the logging system

The default configuration for the logger is determined by the default configuration file. To make permanent changes to
the logger configuration see the [logger] section of the configuration file (config).

If you’d like to control the logger configuration for your current session first import the logger:

>>> from hermes_core import log

or also by:

>>> import logging
>>> log = logging.getLogger('hermes_core')

The threshold level for messages can be set with:

>>> log.setLevel('DEBUG')

This will display DEBUG and all messages with that level and above. If you’d like to see the fewest relevant messages
you’d set the logging level to WARNING or above.

For other options such as whether to log to a file or what level of messages the log file should contain, see the the
HERMES configuration file (config).

3.5.3 Context managers

If you’d like to capture messages as they are generated you can do that with a context manager:

>>> from hermes_core import log
>>> with log.log_to_list() as log_list:
... # your code here

Once your code is executed, log_list will be a Python list containing all of the messages during execution. This does
not divert the messages from going to a file or to the screen. It is also possible to send the messages to a custom file
with:

>>> from hermes_core import log
>>> with log.log_to_file('myfile.log'):
... # your code here

which will save the messages to a local file called myfile.log.

3.5. Logging system 43

hermes_core

44 Chapter 3. User’s Guide

CHAPTER

FOUR

DEVELOPER’S GUIDE

This article describes the guidelines to be followed by developers working on this repository. If you are planning on
contributing to this repository please read the following carefully. This guide borrows heavily from those developed
by the SunPy Project and is generally consistent with this community-developed approach.

4.1 Developer Environment

This Python package is used in the pipeline processing of scientific data from HERMES. Special consideration is
therefore required to ensure that development is compatible with the pipeline environment. It is also important to
ensure that this package is compatible with a user’s systems such as a mac and windows.

4.1.1 Visual Studio Code

Though not required, this packate designed for development in Visual Studio Code inside of a container managed by
Docker. This is the same environment that is used by the data processing pipeline. All of the configuration required by
VS Code are maintained in the devcontainer folder including the Dockerfile. For more information see Developing
inside a Container.

Setup

Follow these steps to set up VS Code.

1. Download and install VS Code.

2. Download and install Docker. The easiest way to do that is to install Docker Desktop.

3. Open VS Code and add the following 2 extensions by navigating to View->Extensions.

1. Docker

2. Remote-Container

4. Ensure that Docker is running by opening Docker Desktop. It will be required to build the container.

5. Restart VS Code and open this repository using File->Open Folder. It might recognize that a container is defined
and prompt you to Reopen in Container. Do so.

6. If not, open the VS Code Command Palette by View->Command Palette (or Ctrl+Shift+P) and select: “Remote-
Containers:Rebuild and Reopen in Container”

7. VS Code should build and open the container (takes as much as 10-20 minutes the first time). You will see
“Starting Dev Container (show log): Building image” in the bottom right corner. Click on “show log” to see
details of the build. This requires Docker to be running.

45

https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.docker.com/products/docker-desktop/

hermes_core

8. Once the build has finished, you will see information about the Dev Container in the bottom left.

9. Exiting VS Code will close the docker container.

10. The next time you open this folder with VS Code it should open in the built container. It should not have to
rebuild the container unless the Dockerfile file has changed.

4.2 Coding Standards

The purpose of the page is to describe the standards that are expected of all the code in this repository. All developers
should read and abide by the following standards. Code which does not follow these standards closely will generally
not be accepted.

We try to closely follow the coding style and conventions proposed by Astropy.

4.2.1 Language Standard

• All code must be compatible with Python 3.7 and later.

• The new Python 3 formatting style should be used (i.e. f"{spam:s}" instead of "%s" % "spam").

4.2.2 Coding Style/Conventions

• The code will follow the standard PEP8 Style Guide for Python Code. In particular, this includes using only 4
spaces for indentation, and never tabs.

• Follow the existing coding style within a file and avoid making changes that are purely stylistic. Please try to
maintain the style when adding or modifying code.

• Following PEP8’s recommendation, absolute imports are to be used in general. We allow relative imports within
a module to avoid circular import chains.

• The import numpy as np, import matplotlib as mpl, and import matplotlib.pyplot as plt
naming conventions should be used wherever relevant. from packagename import * should never be used
(except in __init__.py)

• Classes should either use direct variable access, or Python’s property mechanism for setting object instance
variables.

• Classes should use the builtin super function when making calls to methods in their super-class(es) unless there
are specific reasons not to. super should be used consistently in all subclasses since it does not work otherwise.

• Multiple inheritance should be avoided in general without good reason.

• __init__.py files for modules should not contain any significant implementation code. __init__.py can
contain docstrings and code for organizing the module layout.

46 Chapter 4. Developer’s Guide

https://docs.astropy.org/en/stable/development/codeguide.html#coding-style-conventions
https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#super

hermes_core

4.2.3 Private code

It is often useful to designate code as private, which means it is not part of the user facing API, only used internally
by HERMES, and can be modified without a deprecation period. Any classes, functions, or variables that are private
should either:

• Have an underscore as the first character of their name, e.g., _my_private_function.

• If you want to do that to entire set of functions in a file, name the file with a underscore as the first character, e.g.,
_my_private_file.py.

4.2.4 Utilities

Within this reposiotory, it might be useful to have a set of utility classes or functions that are used by internally to help
with certain tasks or to provide a certain level of abstraction. These should be placed either:

• .{subpackage}.utils.py, if it is only used within that sub-package.

• .util if it is used across multiple sub-packages.

These can be private (see section above) or public. The decision is up to the developer, but if these might be useful for
other modules, they should be made public. These utils may be taken up by the core repository if they are generally
useful for other instrument teams.

4.2.5 Formatting

We enforce a minimum level of code style with our continuous intergration. This runs a tool called pre-commit.

The settings and tools we use for the pre-commit can be found in the file .pre-commit-config.yaml at the root of
the HERMES git repository. Some of the checks are: * Checks (but doesn’t fix) various PEP8 issues with flake8. *
Sort all imports in any Python files with isort. * Remove any unused variables or imports with autoflake.

We suggest you use “tox” (which is used to run the HERMES test suite) to run these tools without having to setup
anything within your own Python virtual environment:

$ tox -e codestyle

This will inform you of what checks failed and why, and what changes (if any) the command has made to your code.

If you want to setup the pre-commit locally, you can do the following:

$ pip install pre-commit

Now you can do:

$ pre-commit run --all-files

which will run the tools on all files in the HERMES git repository. The pre-commit tools can change some of the files,
but in other cases it will report problems that require manual correction. If the pre-commit tool changes any files, they
will show up as new changes that will need to be committed.

4.2. Coding Standards 47

https://pre-commit.com/

hermes_core

Automate

Instead of running the pre-commit command each time you can install the git hook:

$ pre-commit install

which installs a command to .git/hooks/pre-commitwhich will run these tools at the time you do git commit and
means you don’t have to run the first command each time. We only suggest doing the install step if you are comfortable
with git and the pre-commit tool. If you are running inside of a Docker container but are managing git outside of it you
will have to do this outside of the Docker. This also means that you will have to install all of the dependencies on your
local system.

By Hand

Sometimes it is easier to run things by hand. First, let’s talk about Black. If you are using the docker container and
VS Code it format be formatting your code automatically. If you want to check if all of your files are compatible with
Black run the following

$ black –check folder_name

If you want it to go ahead and format the files remote --check.

4.2.6 Documentation and Testing

• American English is the default language for all documentation strings and inline commands. Variables names
should also be based on English words.

• Documentation strings must be present for all public classes/methods/functions, and must follow the form out-
lined in the Documentation Rules page. Additionally, examples or tutorials in the package documentation are
strongly recommended.

• Write usage examples in the docstrings of all classes and functions whenever possible. These examples should
be short and simple to reproduce–users should be able to copy them verbatim and run them. These examples
should, whenever possible, be in the doctests format and will be executed as part of the test suite.

• Unit tests should be provided for as many public methods and functions as possible, and should adhere to the
standards set in the Testing Guidelines document.

4.2.7 Data and Configuration

• We store test data in ./data/test as long as it is less than about 100 kB.

• All persistent configuration should use the Global Settings mechanism. Such configuration items should be
placed at the top of the module or package that makes use of them, and supply a description sufficient for users
to understand what the setting changes.

48 Chapter 4. Developer’s Guide

hermes_core

4.2.8 Standard output, warnings, and errors

The built-in print(...) function should only be used for output that is explicitly requested by the user, for example
print_header(...) or list_catalogs(...). Any other standard output, warnings, and errors should follow these
rules:

• For errors/exceptions, one should always use raise with one of the built-in exception classes, or a custom
exception class (e.g. ValueError, TypeError). The nondescript Exception class should be avoided as much as
possible, in favor of more specific exceptions (IOError, ValueError, etc.).

• For warnings, use the appropriate custom warning classes (e.g. hermes_core.util.exceptions.
HERMESWarning, hermes_core.util.exceptions.HERMESUserWarning) to enable them to be captured by
the logging system.

• For debug messages, use the logging system log.debug() with a descriptive message. Remember that users
may access those messages as well.

4.2.9 Including C Code

• C extensions are only allowed when they provide a significant performance enhancement over pure Python, or a
robust C library already exists to provided the needed functionality.

• The use of Cython is strongly recommended for C extensions.

• If a C extension has a dependency on an external C library, the source code for the library should be bundled
with the HERMES repository, provided the license for the C library is compatible with the HERMES license.
Additionally, the package must be compatible with using a system-installed library in place of the library included
in HERMES.

• In cases where C extensions are needed but Cython cannot be used, the PEP 7 Style Guide for C Code is recom-
mended.

• C extensions (Cython or otherwise) should provide the necessary information for building the extension.

4.3 Testing Guidelines

This section describes the testing framework and format standards for tests. Here we have heavily adapted the Astropy
version, and it is worth reading that link.

The testing framework used by HERMES is the pytest framework, accessed through the pytest command.

Note: The pytest project was formerly called py.test, and you may see the two spellings used interchangeably.

4.3.1 Writing tests

pytest has the following test discovery rules:

* ``test_*.py`` or ``*_test.py`` files
* ``Test`` prefixed classes (without an ``__init__`` method)
* ``test_`` prefixed functions and methods

We use the first one for our test files, test_*.py and we suggest that developers follow this.

A rule of thumb for unit testing is to have at least one unit test per public function.

4.3. Testing Guidelines 49

https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/exceptions.html#ValueError
https://cython.org/
https://cython.org/
https://www.python.org/dev/peps/pep-0007/
https://cython.org/
https://docs.astropy.org/en/latest/development/testguide.html
https://docs.astropy.org/en/latest/development/testguide.html
https://pytest.org/en/latest/
https://pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery

hermes_core

Where to put tests

Each package should include a suite of unit tests, covering as many of the public methods/functions as possible. These
tests should be included inside each package, e.g:

hermes_core/util/tests/

“tests” directories should contain an __init__.py file so that the tests can be imported.

doctests

Code examples in the documentation will also be run as tests and this helps to validate that the documentation is
accurate and up to date. We use the same system as Astropy, so for information on writing doctests see the astropy
documentation.

You do not have to do anything extra in order to run any documentation tests. Within our setup.cfg file we have set
default options for pytest, such that you only need to run:

$ pytest <rst to test>

to run any documentation test.

Bugs Testing

In addition to writing unit tests new functionality, it is also a good practice to write a unit test each time a bug is found,
and submit the unit test along with the fix for the problem. This way we can ensure that the bug does not re-emerge at
a later time.

4.4 Documentation Rules

4.4.1 Overview

All code must be documented and we follow these style conventions described here:

• numpydoc

We recommend familiarizing yourself with this style.

Referring to other code

To link to other methods, classes, or modules in your repo you have to use backticks, for example:

`hermes_core.io.read_file`

generates a link like this: hermes_core.io.read_file.

Other packages can also be linked via intersphinx:

`numpy.mean`

50 Chapter 4. Developer’s Guide

https://docs.astropy.org/en/latest/development/testguide.html#writing-doctests
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
http://www.sphinx-doc.org/en/master/ext/intersphinx.html

hermes_core

will return this link: numpy.mean. This works for Python, Numpy and Astropy (full list is in docs/conf.py).

With Sphinx, if you use :func: or :meth:, it will add closing brackets to the link. If you get the wrong pre-qualifier,
it will break the link, so we suggest that you double check if what you are linking is a method or a function.

:class:`numpy.mean()`
:meth:`numpy.mean()`
:func:`numpy.mean()`

will return two broken links (“class” and “meth”) but “func” will work.

Project-specific Rules

• For all RST files, we enforce a one sentence per line rule and ignore the line length.

4.4.2 Sphinx

All of the documentation (like this page) is built by Sphinx, which is a tool especially well-suited for documenting
Python projects. Sphinx works by parsing files written using a a Mediawiki-like syntax called reStructuredText. It can
also parse markdown files. In addition to parsing static files of reStructuredText, Sphinx can also be told to parse code
comments. In fact, in addition to what you are reading right now, the Python documentation was also created using
Sphinx.

Usage and Building the documentation

All of the documentation is contained in the “docs” folder and code documentation strings. Sphinx builds documenta-
tion iteratively, only adding things that have changed. For more information on how to use Sphinx, consult the Sphinx
documentation.

HTML

To build the html documentation locally use the follownig command, in the root directory run:

$ sphinx-build docs docs/_build/html -W -b html

This will generate HTML documentation in the “docs/_build/html” directory. You can open the “index.html” file to
browse the final product.

PDF

To build the pdf documentation locally use the follownig command, in the root directory run:

$ sphinx-build docs docs/_build/pdf -W -b pdf

This will generate HTML documentation in the “docs/_build/html” directory. You can open the “index.html” file to
browse the final product.

4.4. Documentation Rules 51

https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/rst.html
https://www.python.org/doc/
http://www.sphinx-doc.org/en/stable/contents.html
http://www.sphinx-doc.org/en/stable/contents.html

hermes_core

4.5 Workflow for Maintainers

This page is for maintainers who can merge our own or other peoples’ changes into the upstream repository.

Seeing as how you’re a maintainer, you should be completely on top of the basic git workflow in Developer’s Guide
and Astropy’s git workflow.

4.5.1 Integrating changes via the web interface (recommended)

Whenever possible, merge pull requests automatically via the pull request manager on GitHub. Merging should only
be done manually if there is a really good reason to do this!

Make sure that pull requests do not contain a messy history with merges, etc. If this is the case, then follow the manual
instructions, and make sure the fork is rebased to tidy the history before committing.

To check out a particular pull request to test out locally:

$ git checkout pr/999
Branch pr/999 set up to track remote branch pr/999 from upstream.
Switched to a new branch 'pr/999'

When to remove or combine/squash commits

In all cases, be mindful of maintaining a welcoming environment and be helpful with advice, especially for new con-
tributors. It is expected that a maintainer would offer to help a contributor who is a novice git user do any squashing
that that maintainer asks for, or do the squash themselves by directly pushing to the PR branch.

Pull requests must be rebased and at least partially squashed (but not necessarily squashed to a single commit) if large
(approximately >10KB) non-source code files (e.g. images, data files, etc.) are added and then removed or modified in
the PR commit history (The squashing should remove all but the last addition of the file to not use extra space in the
repository).

Combining/squashing commits is encouraged when the number of commits is excessive for the changes made. The
definition of “excessive” is subjective, but in general one should attempt to have individual commits be units of change,
and not include reversions. As a concrete example, for a change affecting < 50 lines of source code and including a
changelog entry, more than a two commits would be excessive. For a larger pull request adding significant functionality,
however, more commits may well be appropriate.

As another guideline, squashing should remove extraneous information but should not be used to remove useful infor-
mation for how a PR was developed. For example, 4 commits that are testing changes and have a commit message of
just “debug” should be squashed. But a series of commit messages that are “Implemented feature X”, “added test for
feature X”, “fixed bugs revealed by tests for feature X” are useful information and should not be squashed away without
reason.

When squashing, extra care should be taken to keep authorship credit to all individuals who provided substantial con-
tribution to the given PR, e.g. only squash commits made by the same author.

52 Chapter 4. Developer’s Guide

https://docs.sunpy.org/en/stable/dev_guide/index.html#newcomers
https://docs.astropy.org/en/stable/development/workflow/development_workflow.html#development-workflow

hermes_core

When to rebase

Pull requests must be rebased (but not necessarily squashed to a single commit) if:

• There are commit messages include offensive language or violate the code of conduct (in this case the rebase
must also edit the commit messages)

Pull requests may be rebased (either manually or with the rebase and merge button) if:

• There are conflicts with main

• There are merge commits from upstream/main in the PR commit history (merge commits from PRs to the user’s
fork are fine)

Asking contributors who are new to the project or inexperienced with using git is discouraged, as is maintainers
rebasing these PRs before merge time, as this requires resetting of local git checkouts.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
$ git fetch upstream-rw

Rebase
$ git rebase upstream-rw/main

A long series of commits

If there are a longer series of related commits, consider a merge instead:

$ git fetch upstream-rw
$ git merge --no-ff upstream-rw/main

Note the --no-ff above. This forces git to make a merge commit, rather than doing a fast-forward, so that these set of
commits branch off trunk then rejoin the main history with a merge, rather than appearing to have been made directly
on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have the right commits:

$ git log --oneline --graph
$ git log -p upstream-rw/main..

The first line above just shows the history in a compact way, with a text representation of the history graph. The second
line shows the log of commits excluding those that can be reached from trunk (upstream-rw/main), and including
those that can be reached from current HEAD (implied with the .. at the end). So, it shows the commits unique to this
branch compared to trunk. The -p option shows the diff for these commits in patch form.

4.5. Workflow for Maintainers 53

hermes_core

Push to open pull request

Now you need to push the changes you have made to the code to the open pull request:

$ git push git@github.com:<username>/hermes_core.git HEAD:<name of branch>

You might have to add --force if you rebased instead of adding new commits.

4.5.2 IOssue Milestones and Labels

Current milestone guidelines:

• Only confirmed issues or pull requests that are release critical or for some other reason should be addressed
before a release, should have a milestone. When in doubt about which milestone to use for an issue, do not use
a milestone and ask other the maintainers.

Current labelling guidelines:

• Issues that require fixing in main, but that also are confirmed to apply to supported stable version lines should
be marked with a “Affects Release” label.

• All open issues should have a “Priority <level>”, “Effort <level>” and “Package <level>”, if you are unsure at
what level, pick higher ones just to be safe. If an issue is more of a question or discussion, you can omit these
labels.

• If an issue looks to be straightforward, you should add the “Good first issue” and “Hacktoberfest” label.

• For other labels, you should add them if they fit, like if an issue affects the net submodule, add the “net” label or
if it is a feature request etc.

4.5.3 Updating and Maintaining the Changelog

The changelog will be read by users, so this description should be aimed at HERMES users instead of describing
internal changes which are only relevant to the developers.

The current changelog is kept in the file “CHANGELOG.rst” at the root of the repository.

4.5.4 Releases

We have a step by step checklist on the Wiki on how to make a release.

4.6 Global Settings

This package makes use of a settings file (configrc). This file contains a number of global settings such as where files
should be downloaded by default or the default format for displaying times. When developing new functionality check
this file and make use of the default values if appropriate or, if needed, define a new value. More information can be
found in Customization and Global Configuration.

54 Chapter 4. Developer’s Guide

https://github.com/HERMES-SOC/hermes_core/wiki/Release-Process

CHAPTER

FIVE

API REFERENCE

5.1 hermes_core Package

5.1.1 Functions

print_config() Print current configuration options.

print_config

hermes_core.print_config()

Print current configuration options.

5.2 hermes_core.timedata Module

Container class for Measurement Data.

5.2.1 Classes

HermesData(timeseries[, support, spectra, meta]) A generic object for loading, storing, and manipulating
HERMES time series data.

HermesData

class hermes_core.timedata.HermesData(timeseries: TimeSeries, support: dict[Quantity | NDData] | None =
None, spectra: NDCollection | None = None, meta: dict | None =
None)

Bases: object

A generic object for loading, storing, and manipulating HERMES time series data.

Parameters

• timeseries (astropy.timeseries.TimeSeries) – The time series of data. Columns
must be Quantity arrays.

55

https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity
https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData
https://docs.python.org/3/library/constants.html#None
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity

hermes_core

• support (Optional[dict[Union[astropy.units.Quantity, astropy.nddata.
NDData]]]) – Support data arrays which do not vary with time (i.e. Non-Record-Varying
data).

• spectra (Optional[ndcube.NDCollection]) – One or more ndcube.NDCube objects
containing spectral or higher-dimensional timeseries data.

• meta (Optional[dict]) – The metadata describing the time series in an ISTP-compliant
format.

Examples

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from ndcube import NDCube, NDCollection
>>> from astropy.wcs import WCS
>>> from astropy.nddata import NDData
>>> from hermes_core.timedata import HermesData
>>> # Create a TimeSeries structure
>>> data = u.Quantity([1, 2, 3, 4], "gauss", dtype=np.uint16)
>>> ts = TimeSeries(time_start="2016-03-22T12:30:31", time_delta=3 * u.s, data={"Bx
→˓": data})
>>> # Create a Spectra structure
>>> spectra = NDCollection(
... [
... (
... "test_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Test Spectra Variable"},
... unit="eV",
...),
...)
...]
...)
>>> # Create a Support Structure
>>> support_data = {
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }
>>> # Create Global Metadata Attributes
>>> input_attrs = HermesData.global_attribute_template("eea", "l1", "1.0.0")
>>> # Create HermesData Object
>>> hermes_data = HermesData(timeseries=ts, support=support_data, spectra=spectra,␣
→˓meta=input_attrs)

Raises

• ValueError – If the number of columns is less than 2 or the required ‘time’ column is
missing.:

• TypeError – If any column, excluding ‘time’, is not an astropy.units.Quantity object
with units.:

56 Chapter 5. API Reference

https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity

hermes_core

• ValueError – If the elements of a TimeSeries column are multidimensional:

• TypeError – If any supoport data elements are not type astropy.nddata.NDData:

• TypeError – If spectra is not an NDCollection object.:

References

• Astropy TimeSeries

• Astropy Quantity and Units

• Astropy Time

• Astropy NDData

• Sunpy NDCube and NDCollection

• Space Physics Guidelines for CDF (ISTP)

Attributes Summary

data (dict) A dict containing each of timeseries and
support.

meta (collections.OrderedDict) Global metadata as-
sociated with the measurement data.

spectra (ndcube.NDCollection]) A NDCollection ob-
ject containing high-dimensional spectra data.

support (dict[Union[astropy.units.Quantity,
astropy.nddata.NDData]]) A dict containing
one or more non-time-varying support variables.

time (astropy.time.Time) The times of the measure-
ments.

time_range (tuple) The start and end times of the times.
timeseries (astropy.timeseries.TimeSeries) A

TimeSeries representing one or more mea-
surements as a function of time.

5.2. hermes_core.timedata Module 57

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.astropy.org/en/stable/timeseries/index.html/
https://docs.astropy.org/en/stable/units/index.html
https://docs.astropy.org/en/stable/time/index.html
https://docs.astropy.org/en/stable/nddata/
https://docs.sunpy.org/projects/ndcube/en/stable/
https://spdf.gsfc.nasa.gov/istp_guide/istp_guide.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries

hermes_core

Methods Summary

add_measurement(measure_name, data[, meta]) Add a new time-varying scalar measurement (col-
umn).

add_spectra(name, data[, meta]) Add a new time-varying vector measurement.
add_support(name, data[, meta]) Add a new non-time-varying data array.
append(timeseries) Add additional measurements to an existing column.
global_attribute_template([instr_name, ...]) Function to generate a template of the required ISTP-

compliant global attributes.
load(file_path) Load data from a file.
measurement_attribute_template() Function to generate a template of the required mea-

surement attributes.
plot([axes, columns, subplots]) Plot the measurement data.
remove(measure_name) Remove an existing measurement or support data ar-

ray.
save([output_path, overwrite]) Save the data to a HERMES CDF file.

Attributes Documentation

data

(dict) A dict containing each of timeseries and support.

meta

(collections.OrderedDict) Global metadata associated with the measurement data.

spectra

(ndcube.NDCollection]) A NDCollection object containing high-dimensional spectra data.

support

(dict[Union[astropy.units.Quantity, astropy.nddata.NDData]]) A dict containing one or
more non-time-varying support variables.

time

(astropy.time.Time) The times of the measurements.

time_range

(tuple) The start and end times of the times.

timeseries

(astropy.timeseries.TimeSeries) A TimeSeries representing one or more measurements as a func-
tion of time.

Methods Documentation

add_measurement(measure_name: str, data: Quantity, meta: dict | None = None)
Add a new time-varying scalar measurement (column).

Parameters

• measure_name (str) – Name of the measurement to add.

• data (astropy.units.Quantity) – The data to add. Must have the same time stamps
as the existing data.

58 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.python.org/3/library/stdtypes.html#str
https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity

hermes_core

• meta (dict, optional) – The metadata associated with the measurement.

Raises

• TypeError – If var_data is not of type Quantity.:

• ValueError – If data has more than one dimension:

add_spectra(name: str, data: NDCube, meta: dict | None = None)
Add a new time-varying vector measurement. This include higher-dimensional time-varying data.

Parameters

• name (str) – Name of the measurement to add.

• data (ndcube.NDCube) – The data to add. Must have the same time stamps as the existing
data.

• meta (dict, optional) – The metadata associated with the measurement.

Raises
TypeError – If var_data is not of type NDCube.:

add_support(name: str, data: Quantity | NDData, meta: dict | None = None)
Add a new non-time-varying data array.

Parameters

• name (str) – Name of the data array to add.

• data (Union[astropy.units.Quantity, astropy.nddata.NDData],) – The data to
add.

• meta (Optional[dict], optional) – The metadata associated for the data array.

Raises
TypeError – If var_data is not of type NDData.:

append(timeseries: TimeSeries)
Add additional measurements to an existing column.

Parameters
timeseries (astropy.timeseries.TimeSeries) – The data to be appended (rows) as a
TimeSeries object.

static global_attribute_template(instr_name: str = '', data_level: str = '', version: str = '')→
OrderedDict

Function to generate a template of the required ISTP-compliant global attributes.

Parameters

• instr_name (str) – The instrument name. Must be “eea”, “nemisis”, “merit” or “spani”.

• data_level (str) – The data level of the data. Must be “l0”, “l1”, “ql”, “l2”, “l3”, “l4”

• version (str) – Must be of the form X.Y.Z.

Returns
template (collections.OrderedDict) – A template for required global attributes.

classmethod load(file_path: str)
Load data from a file.

Parameters
file_path (str) – A fully specificed file path.

5.2. hermes_core.timedata Module 59

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCube.html#ndcube.NDCube
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.astropy.org/en/stable/api/astropy.units.quantity.Quantity.html#astropy.units.quantity.Quantity
https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html#astropy.nddata.NDData
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

hermes_core

Returns
data (HermesData) – A HermesData object containing the loaded data.

Raises
ValueError – If the file type is not recognized as a file type that can be loaded.:

static measurement_attribute_template()→ OrderedDict
Function to generate a template of the required measurement attributes.

Returns
template (collections.OrderedDict) – A template for required variable attributes that
must be provided.

plot(axes=None, columns=None, subplots=True, **plot_args)
Plot the measurement data.

Parameters

• axes (Axes, optional) – If provided the image will be plotted on the given axes. Defaults
to None and creates a new axis.

• columns (list[str], optional) – If provided, only plot the specified measurements oth-
erwise try to plot them all.

• subplots (bool) – If set, all columns are plotted in their own plot panel.

• **plot_args (dict, optional) – Additional plot keyword arguments that are handed to
Axes.

Returns
Axes – The plot axes.

remove(measure_name: str)
Remove an existing measurement or support data array.

Parameters
measure_name (str) – Name of the variable to remove.

save(output_path: str | None = None, overwrite: bool = False)
Save the data to a HERMES CDF file.

Parameters

• output_path (str, optional) – A string path to the directory where file is to be saved. If
not provided, saves to the current directory.

• overwrite (bool) – If set, overwrites existing file of the same name.

Returns
path (str) – A path to the saved file.

60 Chapter 5. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

hermes_core

5.3 hermes_core.util Package

5.3.1 Functions

create_science_filename(instrument, time, ...) Return a compliant filename.
parse_science_filename(filepath) Parses a science filename into its consitutient properties

(instrument, mode, test, time, level, version, descriptor).
warn_deprecated(msg[, stacklevel]) Raise a HERMESDeprecationWarning.
warn_user(msg[, stacklevel]) Raise a HERMESUserWarning.

create_science_filename

hermes_core.util.create_science_filename(instrument: str, time: str, level: str, version: str, mode: str = '',
descriptor: str = '', test: bool = False)

Return a compliant filename. The format is defined as

hermes_{inst}_{mode}_{level}{test}_{descriptor}_{time}_v{version}.cdf

This format is only appropriate for data level >= 1.

Parameters

• instrument (str) – The instrument name. Must be one of the following “eea”, “nemesis”,
“merit”, “spani”

• time (str (in isot format) or ~astropy.time) – The time

• level (str) – The data level. Must be one of the following “l0”, “l1”, “l2”, “l3”, “l4”, “ql”

• version (str) – The file version which must be given as X.Y.Z

• descriptor (str) – An optional file descriptor.

• mode (str) – An optional instrument mode.

• test (bool) – Selects whether the file is a test file.

Returns
filename (str) – A CDF file name including the given parameters that matches the HERMES
file naming conventions

Raises

• ValueError – If the instrument is not recognized as one of the HERMES instruments:

• ValueError – If the data level is not recognized as one of the HERMES valid data levels:

• ValueError – If the data version does not match the HERMES data version formatting
conventions:

• ValueError – If the data product descriptor or instrument mode do not match the HERMES
formatting conventions:

5.3. hermes_core.util Package 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

hermes_core

parse_science_filename

hermes_core.util.parse_science_filename(filepath: str)→ dict
Parses a science filename into its consitutient properties (instrument, mode, test, time, level, version, descriptor).

Parameters
filepath (str) – Fully specificied filepath of an input file

Returns
result (dict) – A dictionary with each property.

Raises

• ValueError – If the file’s mission name is not “HERMES”:

• ValueError – If the file’s instreument name is not one of the HERMES instruments:

• ValueError – If the data level >0 for packet files:

• ValueError – If not a CDF File:

warn_deprecated

hermes_core.util.warn_deprecated(msg, stacklevel=1)
Raise a HERMESDeprecationWarning.

Parameters

• msg (str) – Warning message.

• stacklevel (int) – This is interpreted relative to the call to this function, e.g.
stacklevel=1 (the default) sets the stack level in the code that calls this function.

warn_user

hermes_core.util.warn_user(msg, stacklevel=1)
Raise a HERMESUserWarning.

Parameters

• msg (str) – Warning message.

• stacklevel (int) – This is interpreted relative to the call to this function, e.g.
stacklevel=1 (the default) sets the stack level in the code that calls this function.

5.3.2 Classes

HERMESDeprecationWarning A warning class to indicate a deprecated feature.
HERMESPendingDeprecationWarning A warning class to indicate a soon-to-be deprecated fea-

ture.
HERMESUserWarning The primary warning class for HERMES.
HERMESWarning The base warning class from which all HERMES warn-

ings should inherit.

62 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

hermes_core

HERMESDeprecationWarning

exception hermes_core.util.HERMESDeprecationWarning

A warning class to indicate a deprecated feature.

HERMESPendingDeprecationWarning

exception hermes_core.util.HERMESPendingDeprecationWarning

A warning class to indicate a soon-to-be deprecated feature.

HERMESUserWarning

exception hermes_core.util.HERMESUserWarning

The primary warning class for HERMES.

Use this if you do not need a specific type of warning.

HERMESWarning

exception hermes_core.util.HERMESWarning

The base warning class from which all HERMES warnings should inherit.

Any warning inheriting from this class is handled by the HERMES logger. This warning should not be issued in
normal code. Use “HERMESUserWarning” instead or a specific sub-class.

5.4 hermes_core.util.io Module

5.4.1 Classes

CDFHandler() A concrete implementation of HermesDataIOHandler
for handling heliophysics data in CDF format.

CDFHandler

class hermes_core.util.io.CDFHandler

Bases: HermesDataIOHandler

A concrete implementation of HermesDataIOHandler for handling heliophysics data in CDF format.

This class provides methods to load and save heliophysics data from/to a CDF file.

5.4. hermes_core.util.io Module 63

hermes_core

Methods Summary

load_data(file_path) Load heliophysics data from a CDF file.
save_data(data, file_path) Save heliophysics data to a CDF file.

Methods Documentation

load_data(file_path: str)→ Tuple[TimeSeries, dict]
Load heliophysics data from a CDF file.

Parameters
file_path (str) – The path to the CDF file.

Returns

• data (TimeSeries) – An instance of TimeSeries containing the loaded data.

• support (dict[astropy.nddata.NDData]) – Non-record-varying data contained in the
file

• spectra (ndcube.NDCollection) – Spectral or High-dimensional measurements in the
loaded data.

save_data(data, file_path: str)
Save heliophysics data to a CDF file.

Parameters

• data (hermes_core.timedata.HermesData) – An instance of HermesData containing
the data to be saved.

• file_path (str) – The path to save the CDF file.

Returns
path (str) – A path to the saved file.

5.5 hermes_core.util.schema Module

This module provides schema metadata derivations.

This code is based on that provided by SpacePy see
licenses/SPACEPY.rst

5.5.1 Classes

HermesDataSchema() Class representing the schema of a file type.

64 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.astropy.org/en/stable/api/astropy.timeseries.TimeSeries.html#astropy.timeseries.TimeSeries
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.sunpy.org/projects/ndcube/en/stable/api/ndcube.NDCollection.html#ndcube.NDCollection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

hermes_core

HermesDataSchema

class hermes_core.util.schema.HermesDataSchema

Bases: object

Class representing the schema of a file type.

Attributes Summary

default_global_attributes (dict) Default Global Attributes applied for all HER-
MES Data Files

global_attribute_schema (dict) Schema for variable attributes of the file.
variable_attribute_schema (dict) Schema for variable attributes of the file.

Methods Summary

derive_global_attributes(data) Function to derive global attributes for the given mea-
surement data.

derive_measurement_attributes(data,
var_name)

Function to derive metadata for the given measure-
ment.

derive_time_attributes(data) Function to derive metadata for the time measure-
ment.

global_attribute_info([attribute_name]) Function to generate a astropy.table.Table of
information about each global metadata attribute.

global_attribute_template() Function to generate a template of required global at-
tributes that must be set for a valid CDF.

measurement_attribute_info([attribute_name]) Function to generate a astropy.table.Table of
information about each variable metadata attribute.

measurement_attribute_template() Function to generate a template of required measure-
ment attributes that must be set for a valid CDF mea-
surement variable.

Attributes Documentation

default_global_attributes

(dict) Default Global Attributes applied for all HERMES Data Files

global_attribute_schema

(dict) Schema for variable attributes of the file.

variable_attribute_schema

(dict) Schema for variable attributes of the file.

5.5. hermes_core.util.schema Module 65

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

hermes_core

Methods Documentation

derive_global_attributes(data)→ OrderedDict
Function to derive global attributes for the given measurement data.

Parameters
data (hermes_core.timedata.HermesData) – An instance of HermesData to derive
metadata from.

Returns
attributes (OrderedDict) – A dict containing key: value pairs of global metadata at-
tributes.

derive_measurement_attributes(data, var_name: str, guess_types: list[int] | None = None)→
OrderedDict

Function to derive metadata for the given measurement.

Parameters

• data (hermes_core.timedata.HermesData) – An instance of HermesData to derive
metadata from

• var_name (str) – The name of the measurement to derive metadata for

• guess_types (list[int], optional) – Guessed CDF Type of the variable

Returns
attributes (OrderedDict) – A dict containing key: value pairs of derived metadata at-
tributes.

derive_time_attributes(data)→ OrderedDict
Function to derive metadata for the time measurement.

Parameters
data (hermes_core.timedata.HermesData) – An instance of HermesData to derive
metadata from.

Returns
attributes (OrderedDict) – A dict containing key: value pairs of time metadata at-
tributes.

static global_attribute_info(attribute_name: str | None = None)→ Table
Function to generate a astropy.table.Table of information about each global metadata attribute. The
astropy.table.Table contains all information in the HERMES global attribute schema including:

• description: (str) A brief description of the attribute

• default: (str) The default value used if none is provided

• derived: (bool) Whether the attibute can be derived by the HERMES
HermesDataSchema class

• required: (bool) Whether the attribute is required by HERMES standards

• validate: (bool) Whether the attribute is included in the
validate() checks (Note, not all attributes that are required are validated)

• overwrite: (bool) Whether the HermesDataSchema
attribute derivations will overwrite an existing attribute value with an updated attribute value from
the derivation process.

66 Chapter 5. API Reference

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

hermes_core

Parameters
attribute_name (str, optional, default None) – The name of the attribute to get specific
information for.

Returns
info (astropy.table.Table) – A table of information about global metadata.

Raises
KeyError – If attribute_name is not a recognized global attribute.:

static global_attribute_template()→ OrderedDict
Function to generate a template of required global attributes that must be set for a valid CDF.

Returns
template (OrderedDict) – A template for required global attributes that must be provided.

static measurement_attribute_info(attribute_name: str | None = None)→ Table
Function to generate a astropy.table.Table of information about each variable metadata attribute. The
astropy.table.Table contains all information in the HERMES variable attribute schema including:

• description: (str) A brief description of the attribute

• derived: (bool) Whether the attibute can be derived by the HERMES
HermesDataSchema class

• required: (bool) Whether the attribute is required by HERMES standards

• overwrite: (bool) Whether the HermesDataSchema
attribute derivations will overwrite an existing attribute value with an updated attribute value from
the derivation process.

• valid_values: (str) List of allowed values the attribute can take for HERMES products,
if applicable

• alternate: (str) An additional attribute name that can be treated as an alternative
of the given attribute. Not all attributes have an alternative and only one of a given attribute or its
alternate are required.

• var_types: (str) A list of the variable types that require the given
attribute to be present.

Parameters
attribute_name (str, optional, default None) – The name of the attribute to get specific
information for.

Returns
info (astropy.table.Table) – A table of information about variable metadata.

Raises
KeyError – If attribute_name is not a recognized global attribute.:

static measurement_attribute_template()→ OrderedDict
Function to generate a template of required measurement attributes that must be set for a valid CDF mea-
surement variable.

Returns
template (OrderedDict) – A template for required variable attributes that must be provided.

5.5. hermes_core.util.schema Module 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/collections.html#collections.OrderedDict

hermes_core

5.6 hermes_core.util.util Module

This module provides general utility functions.

5.6.1 Functions

create_science_filename(instrument, time, ...) Return a compliant filename.
parse_science_filename(filepath) Parses a science filename into its consitutient properties

(instrument, mode, test, time, level, version, descriptor).

create_science_filename

hermes_core.util.util.create_science_filename(instrument: str, time: str, level: str, version: str, mode:
str = '', descriptor: str = '', test: bool = False)

Return a compliant filename. The format is defined as

hermes_{inst}_{mode}_{level}{test}_{descriptor}_{time}_v{version}.cdf

This format is only appropriate for data level >= 1.

Parameters

• instrument (str) – The instrument name. Must be one of the following “eea”, “nemesis”,
“merit”, “spani”

• time (str (in isot format) or ~astropy.time) – The time

• level (str) – The data level. Must be one of the following “l0”, “l1”, “l2”, “l3”, “l4”, “ql”

• version (str) – The file version which must be given as X.Y.Z

• descriptor (str) – An optional file descriptor.

• mode (str) – An optional instrument mode.

• test (bool) – Selects whether the file is a test file.

Returns
filename (str) – A CDF file name including the given parameters that matches the HERMES
file naming conventions

Raises

• ValueError – If the instrument is not recognized as one of the HERMES instruments:

• ValueError – If the data level is not recognized as one of the HERMES valid data levels:

• ValueError – If the data version does not match the HERMES data version formatting
conventions:

• ValueError – If the data product descriptor or instrument mode do not match the HERMES
formatting conventions:

68 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

hermes_core

parse_science_filename

hermes_core.util.util.parse_science_filename(filepath: str)→ dict
Parses a science filename into its consitutient properties (instrument, mode, test, time, level, version, descriptor).

Parameters
filepath (str) – Fully specificied filepath of an input file

Returns
result (dict) – A dictionary with each property.

Raises

• ValueError – If the file’s mission name is not “HERMES”:

• ValueError – If the file’s instreument name is not one of the HERMES instruments:

• ValueError – If the data level >0 for packet files:

• ValueError – If not a CDF File:

5.7 hermes_core.util.validation Module

5.7.1 Functions

validate(filepath) Validate a data file such as a CDF.

validate

hermes_core.util.validation.validate(filepath: str)→ list[str]
Validate a data file such as a CDF.

Parameters
filepath (str) – A fully specificed file path.

Returns
errors (list[str]) – A list of validation errors returned. A valid file will result in an emppty
list being returned.

5.7.2 Classes

CDFValidator() Validator for CDF files.

5.7. hermes_core.util.validation Module 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

hermes_core

CDFValidator

class hermes_core.util.validation.CDFValidator

Bases: HermesDataValidator

Validator for CDF files.

Methods Summary

validate(file_path) Validate the CDF file.

Methods Documentation

validate(file_path: str)→ list[str]
Validate the CDF file.

Parameters
file_path (str) – The path to the CDF file.

Returns
errors (list[str]) – A list of validation errors returned. A valid file will result in an emppty
list being returned.

70 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

SIX

EXAMPLES

6.1 Creating a CDF File

This module provides an example for creating a CDF File using the HermesData class. This class is an abstraction of
underlying data structures to make the handling of measurement data easier when reading and writing CDF data.

>>> from collections import OrderedDict
>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.timeseries import TimeSeries
>>> from astropy.nddata import NDData
>>> from astropy.wcs import WCS
>>> from ndcube import NDCube, NDCollection
>>> import tempfile
>>>
>>> # Import the `hermes_core` Package
>>> from hermes_core.timedata import HermesData
>>> from hermes_core.util.validation import validate
>>>
>>> # Create a np.ndarray of example measurement data
>>> bx = np.random.choice(a=[-1, 0, 1], size=1000).cumsum(0)
>>> by = np.random.choice(a=[-1, 0, 1], size=1000).cumsum(0)
>>>
>>> # Create a TimeSeries with the example measurement and a Time column
>>> ts = TimeSeries(
... time_start="2016-03-22T12:30:31",
... time_delta=3 * u.s,
... data={"Bx GSE": u.Quantity(value=bx, unit="nanoTesla", dtype=np.int16)},
...)
>>>
>>> # You can also add new measurements to the TimeSeries directly
>>> ts.add_column(col=u.Quantity(value=by, unit="nanoTesla", dtype=np.int16),
... name="By GSE"
...)
>>>
>>> # Create support data or non-time-varying (time invariant) data
>>> support_data = {
... "data_mask": NDData(data=np.eye(100, 100, dtype=np.uint16))
... }
>>>
>>> # Create high-dimensional data leveraging the API of NDCube

(continues on next page)

71

hermes_core

(continued from previous page)

>>> spectra = NDCollection(
... [
... (
... "example_spectra",
... NDCube(
... data=np.random.random(size=(4, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...),
...)
...]
...)
>>>
>>> # To make the creation of global metadata easier you can use the static
>>> # `HermesData.global_attribute_template()` function.
>>> global_attrs_template = HermesData.global_attribute_template()
>>>
>>> global_attrs_template["DOI"] = "https://doi.org/<PREFIX>/<SUFFIX>"
>>> global_attrs_template["Data_level"] = "L1>Level 2"
>>> global_attrs_template["Data_version"] = "0.0.1"
>>> global_attrs_template[
... "Descriptor"
...] = "nemisis>Noise Eliminating Magnetometer Instrument in a Small Integrated System"
>>> global_attrs_template["Instrument_mode"] = "default"
>>> global_attrs_template["Instrument_type"] = "Magnetic Fields (space)"
>>> global_attrs_template["Data_product_descriptor"] = "odpd"
>>>
>>> global_attrs_template["HTTP_LINK"] = [
... "https://science.nasa.gov/missions/hermes",
... "https://github.com/HERMES-SOC",
... "https://github.com/HERMES-SOC/hermes_nemisis",
...]
>>> global_attrs_template["LINK_TEXT"] = ["HERMES homepage",
... "HERMES SOC Github", "NEMISIS Analysis Tools"]
>>> global_attrs_template["LINK_TITLE"] = ["HERMES homepage",
... "HERMES SOC Github", "NEMISIS Analysis Tools"]
>>>
>>> global_attrs_template["MODS"] = ["v0.0.1 - Original version."]
>>> global_attrs_template["PI_affiliation"] = "NASA Goddard Space Flight Center"
>>> global_attrs_template["PI_name"] = "Dr. Eftyhia Zesta"
>>> global_attrs_template["TEXT"] = "Sample HERMES NEMISIS CDF File"
>>>
>>> example_data = HermesData(
... timeseries=ts,
... support=support_data,
... spectra=spectra,
... meta=global_attrs_template
...)
>>>
>>> # To make the creation of variable metadata easier you can use the static
>>> # `HermesData.measurement_attribute_template()` function.

(continues on next page)

72 Chapter 6. Examples

hermes_core

(continued from previous page)

>>> template = HermesData.measurement_attribute_template()
>>>
>>> # Update the Metadata for each of the Measurements
>>> example_data.timeseries["Bx GSE"].meta.update(
... OrderedDict({"CATDESC": "X component of magnetic Field GSE"}))
>>> example_data.timeseries["By GSE"].meta.update(
... OrderedDict({"CATDESC": "Y component of magnetic Field GSE"}))
>>>
>>> # You can add new scalar time-variant measurements to the HermesData container
>>> bz = np.random.choice(a=[-1, 0, 1], size=1000).cumsum(0)
>>> example_data.add_measurement(
... measure_name="Bz GSE",
... data=u.Quantity(value=bz, unit="nanoTesla", dtype=np.int16),
... meta={
... "VAR_TYPE": "data",
... "CATDESC": "Z component of magnetic Field GSE",
... },
...)
>>>
>>> # You can add new time-invariant data to the HermesData container
>>> example_data.add_support(
... name="calibration_const",
... data=NDData(data=[1e-1]),
... meta={
... "CATDESC": "Calibration Factor",
... "VAR_TYPE": "metadata"
... },
...)
>>>
>>> # You can ass new spectral or high-dimensional data to the HermesData container
>>> data = NDCube(
... data=np.random.random(size=(1000, 10)),
... wcs=WCS(naxis=2),
... meta={"CATDESC": "Example Spectra Variable"},
... unit="eV",
...)
>>> example_data.add_spectra(
... name="added_spectra",
... data=data,
... meta={"VAR_TYPE": "data"},
...)
>>>
>>> # create the CDF File
>>> DRYRUN=True
>>> if DRYRUN:
... with tempfile.TemporaryDirectory() as tmpdirname:
... cdf_file_path = example_data.save(output_path=tmpdirname)
... else:
... cdf_file_path = example_data.save(output_path="./", overwrite=True)

The file that this code generates is made available as a sample file in this repository in hermes_core/data/sample/
hermes_nms_default_l1_20160322T123031_v0.0.1.cdf.

6.1. Creating a CDF File 73

hermes_core

74 Chapter 6. Examples

PYTHON MODULE INDEX

h
hermes_core, 55
hermes_core.timedata, 55
hermes_core.util, 61
hermes_core.util.io, 63
hermes_core.util.schema, 64
hermes_core.util.util, 68
hermes_core.util.validation, 69

75

hermes_core

76 Python Module Index

INDEX

A
add_measurement() (her-

mes_core.timedata.HermesData method),
58

add_spectra() (hermes_core.timedata.HermesData
method), 59

add_support() (hermes_core.timedata.HermesData
method), 59

append() (hermes_core.timedata.HermesData method),
59

C
CDFHandler (class in hermes_core.util.io), 63
CDFValidator (class in hermes_core.util.validation), 70
create_science_filename() (in module her-

mes_core.util), 61
create_science_filename() (in module her-

mes_core.util.util), 68

D
data (hermes_core.timedata.HermesData attribute), 58
default_global_attributes (her-

mes_core.util.schema.HermesDataSchema
attribute), 65

derive_global_attributes() (her-
mes_core.util.schema.HermesDataSchema
method), 66

derive_measurement_attributes() (her-
mes_core.util.schema.HermesDataSchema
method), 66

derive_time_attributes() (her-
mes_core.util.schema.HermesDataSchema
method), 66

G
global_attribute_info() (her-

mes_core.util.schema.HermesDataSchema
static method), 66

global_attribute_schema (her-
mes_core.util.schema.HermesDataSchema
attribute), 65

global_attribute_template() (her-
mes_core.timedata.HermesData static method),
59

global_attribute_template() (her-
mes_core.util.schema.HermesDataSchema
static method), 67

H
hermes_core

module, 55
hermes_core.timedata

module, 55
hermes_core.util

module, 61
hermes_core.util.io

module, 63
hermes_core.util.schema

module, 64
hermes_core.util.util

module, 68
hermes_core.util.validation

module, 69
HermesData (class in hermes_core.timedata), 55
HermesDataSchema (class in hermes_core.util.schema),

65
HERMESDeprecationWarning, 63
HERMESPendingDeprecationWarning, 63
HERMESUserWarning, 63
HERMESWarning, 63

L
load() (hermes_core.timedata.HermesData class

method), 59
load_data() (hermes_core.util.io.CDFHandler

method), 64

M
measurement_attribute_info() (her-

mes_core.util.schema.HermesDataSchema
static method), 67

77

hermes_core

measurement_attribute_template() (her-
mes_core.timedata.HermesData static method),
60

measurement_attribute_template() (her-
mes_core.util.schema.HermesDataSchema
static method), 67

meta (hermes_core.timedata.HermesData attribute), 58
module

hermes_core, 55
hermes_core.timedata, 55
hermes_core.util, 61
hermes_core.util.io, 63
hermes_core.util.schema, 64
hermes_core.util.util, 68
hermes_core.util.validation, 69

P
parse_science_filename() (in module her-

mes_core.util), 62
parse_science_filename() (in module her-

mes_core.util.util), 69
plot() (hermes_core.timedata.HermesData method), 60
print_config() (in module hermes_core), 55

R
remove() (hermes_core.timedata.HermesData method),

60

S
save() (hermes_core.timedata.HermesData method), 60
save_data() (hermes_core.util.io.CDFHandler

method), 64
spectra (hermes_core.timedata.HermesData attribute),

58
support (hermes_core.timedata.HermesData attribute),

58

T
time (hermes_core.timedata.HermesData attribute), 58
time_range (hermes_core.timedata.HermesData

attribute), 58
timeseries (hermes_core.timedata.HermesData

attribute), 58

V
validate() (hermes_core.util.validation.CDFValidator

method), 70
validate() (in module hermes_core.util.validation), 69
variable_attribute_schema (her-

mes_core.util.schema.HermesDataSchema
attribute), 65

W
warn_deprecated() (in module hermes_core.util), 62
warn_user() (in module hermes_core.util), 62

78 Index

	Release History
	Full Changelog
	Latest
	0.2.0 (2023-03-22)
	0.1.0 (2022-10-05)

	Calibration and Measurement Algorithm Document (CMAD)
	User’s Guide
	A Brief Tour
	Opening and Writing HERMES Data
	Overview
	Creating a HermesData object
	Creating a TimeSeries for HermesData timeseries
	Creating a NDCollection for HermesData spectra
	Creating a dict for HermesData support
	Creating a dict for HermesData meta
	Using Defined Elements to create a HermesData Data Container

	Creating a HermesData from an existing CDF File
	Adding data to a HermesData Container
	Adding metadata attributes
	Global Metadata Attributes
	Required Global Attributes
	Derived Global Attributes
	Using a Template for Global Metadata Attributes

	Variable Metadata Attributes
	Required Variable Attributes
	Derived Variable Attributes
	Using a Template for Variable Metadata Attributes

	Visualizing data in a HermesData Container
	Writing a CDF File
	Validating a CDF File

	HERMES CDF Format Guide
	1. Introduction
	1.1 Purpose and Scope
	1.2 References

	2. HERMES Science Investigations
	3. Conventions
	3.1 Science Product Naming Conventions
	3.1.1 Version Numbering Guidelines

	4. Global Attributes
	4.1 Required Global Attributes
	4.2 Recommended Attributes
	4.3 Optional Attributes

	5. Variables
	5.1 Data
	5.1.1 Naming
	5.1.1.1 Caveats

	5.1.2 Required Epoch Variable
	5.1.3 Required Attributes: Data Variables
	5.1.4 Attributes for DEPEND_i Variables

	5.2 Quaternions
	5.3 Support Data
	5.3.1 Naming
	5.3.2 Required Attributes: Support Variables

	5.4 Metadata
	5.4.1 Naming
	5.4.2 Required Attributes: Metadata Variables

	5.5 Variable Attribute Schema

	Customization and Global Configuration
	The configrc file
	Using your own configrc file
	Dynamic settings
	A sample configrc file

	Logging system
	Overview
	Configuring the logging system
	Context managers

	Developer’s Guide
	Developer Environment
	Visual Studio Code
	Setup

	Coding Standards
	Language Standard
	Coding Style/Conventions
	Private code
	Utilities
	Formatting
	Automate
	By Hand

	Documentation and Testing
	Data and Configuration
	Standard output, warnings, and errors
	Including C Code

	Testing Guidelines
	Writing tests
	Where to put tests
	doctests
	Bugs Testing

	Documentation Rules
	Overview
	Referring to other code
	Project-specific Rules

	Sphinx
	Usage and Building the documentation
	HTML
	PDF

	Workflow for Maintainers
	Integrating changes via the web interface (recommended)
	When to remove or combine/squash commits
	When to rebase
	A few commits
	A long series of commits
	Check the history
	Push to open pull request

	IOssue Milestones and Labels
	Updating and Maintaining the Changelog
	Releases

	Global Settings

	API Reference
	hermes_core Package
	Functions
	print_config

	hermes_core.timedata Module
	Classes
	HermesData

	hermes_core.util Package
	Functions
	create_science_filename
	parse_science_filename
	warn_deprecated
	warn_user

	Classes
	HERMESDeprecationWarning
	HERMESPendingDeprecationWarning
	HERMESUserWarning
	HERMESWarning

	hermes_core.util.io Module
	Classes
	CDFHandler

	hermes_core.util.schema Module
	Classes
	HermesDataSchema

	hermes_core.util.util Module
	Functions
	create_science_filename
	parse_science_filename

	hermes_core.util.validation Module
	Functions
	validate

	Classes
	CDFValidator

	Examples
	Creating a CDF File

	Python Module Index
	Index

